1,148 research outputs found

    Calculating Unknown Eigenvalues with a Quantum Algorithm

    Full text link
    Quantum algorithms are able to solve particular problems exponentially faster than conventional algorithms, when implemented on a quantum computer. However, all demonstrations to date have required already knowing the answer to construct the algorithm. We have implemented the complete quantum phase estimation algorithm for a single qubit unitary in which the answer is calculated by the algorithm. We use a new approach to implementing the controlled-unitary operations that lie at the heart of the majority of quantum algorithms that is more efficient and does not require the eigenvalues of the unitary to be known. These results point the way to efficient quantum simulations and quantum metrology applications in the near term, and to factoring large numbers in the longer term. This approach is architecture independent and thus can be used in other physical implementations

    Experimental realisation of Shor's quantum factoring algorithm using qubit recycling

    Full text link
    Quantum computational algorithms exploit quantum mechanics to solve problems exponentially faster than the best classical algorithms. Shor's quantum algorithm for fast number factoring is a key example and the prime motivator in the international effort to realise a quantum computer. However, due to the substantial resource requirement, to date, there have been only four small-scale demonstrations. Here we address this resource demand and demonstrate a scalable version of Shor's algorithm in which the n qubit control register is replaced by a single qubit that is recycled n times: the total number of qubits is one third of that required in the standard protocol. Encoding the work register in higher-dimensional states, we implement a two-photon compiled algorithm to factor N=21. The algorithmic output is distinguishable from noise, in contrast to previous demonstrations. These results point to larger-scale implementations of Shor's algorithm by harnessing scalable resource reductions applicable to all physical architectures.Comment: 7 pages, 3 figure

    Differential gene expression in nearly isogenic lines with QTL for partial resistance to Puccinia hordei in barley

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The barley-<it>Puccinia hordei </it>(barley leaf rust) pathosystem is a model for investigating partial disease resistance in crop plants and genetic mapping of phenotypic resistance has identified several quantitative trait loci (QTL) for partial resistance. Reciprocal QTL-specific near-isogenic lines (QTL-NILs) have been developed that combine two QTL, <it>Rphq</it>2 and <it>Rphq</it>3, the largest effects detected in a recombinant-inbred-line (RIL) population derived from a cross between the super-susceptible line L94 and partially-resistant line Vada. The molecular mechanism underpinning partial resistance in these QTL-NILs is unknown.</p> <p>Results</p> <p>An Agilent custom microarray consisting of 15,000 probes derived from barley consensus EST sequences was used to investigate genome-wide and QTL-specific differential expression of genes 18 hours post-inoculation (hpi) with <it>Puccinia hordei</it>. A total of 1,410 genes were identified as being significantly differentially expressed across the genome, of which 55 were accounted for by the genetic differences defined by QTL-NILs at <it>Rphq</it>2 and <it>Rphq</it>3. These genes were predominantly located at the QTL regions and are, therefore, positional candidates. One gene, encoding the transcriptional repressor Ethylene-Responsive Element Binding Factor 4 (<it>HvERF4</it>) was located outside the QTL at 71 cM on chromosome 1H, within a previously detected eQTL hotspot for defence response. The results indicate that <it>Rphq</it>2 or <it>Rphq</it>3 contains a <it>trans</it>-eQTL that modulates expression of <it>HvERF4</it>. We speculate that HvERF4 functions as an intermediate that conveys the response signal from a gene(s) contained within <it>Rphq</it>2 or <it>Rphq</it>3 to a host of down-stream defense responsive genes. Our results also reveal that barley lines with extreme or intermediate partial resistance phenotypes exhibit a profound similarity in their spectrum of <it>Ph</it>-responsive genes and that hormone-related signalling pathways are actively involved in response to <it>Puccinia hordei</it>.</p> <p>Conclusions</p> <p>Differential gene expression between QTL-NILs identifies genes predominantly located within the target region(s) providing both transcriptional and positional candidate genes for the QTL. Genetically mapping the differentially expressed genes relative to the QTL has the potential to discover <it>trans</it>-eQTL mediated regulatory relays initiated from genes within the QTL regions.</p

    Extreme genetic fragility of the HIV-1 capsid

    Get PDF
    Genetic robustness, or fragility, is defined as the ability, or lack thereof, of a biological entity to maintain function in the face of mutations. Viruses that replicate via RNA intermediates exhibit high mutation rates, and robustness should be particularly advantageous to them. The capsid (CA) domain of the HIV-1 Gag protein is under strong pressure to conserve functional roles in viral assembly, maturation, uncoating, and nuclear import. However, CA is also under strong immunological pressure to diversify. Therefore, it would be particularly advantageous for CA to evolve genetic robustness. To measure the genetic robustness of HIV-1 CA, we generated a library of single amino acid substitution mutants, encompassing almost half the residues in CA. Strikingly, we found HIV-1 CA to be the most genetically fragile protein that has been analyzed using such an approach, with 70% of mutations yielding replication-defective viruses. Although CA participates in several steps in HIV-1 replication, analysis of conditionally (temperature sensitive) and constitutively non-viable mutants revealed that the biological basis for its genetic fragility was primarily the need to coordinate the accurate and efficient assembly of mature virions. All mutations that exist in naturally occurring HIV-1 subtype B populations at a frequency &gt;3%, and were also present in the mutant library, had fitness levels that were &gt;40% of WT. However, a substantial fraction of mutations with high fitness did not occur in natural populations, suggesting another form of selection pressure limiting variation in vivo. Additionally, known protective CTL epitopes occurred preferentially in domains of the HIV-1 CA that were even more genetically fragile than HIV-1 CA as a whole. The extreme genetic fragility of HIV-1 CA may be one reason why cell-mediated immune responses to Gag correlate with better prognosis in HIV-1 infection, and suggests that CA is a good target for therapy and vaccination strategies

    Yield Strength of Transparent MgAl2O4 Nano-Ceramic at High Pressure and Temperature

    Get PDF
    We report here experimental results of yield strength and stress relaxation measurements of transparent MgAl2O4 nano-ceramics at high pressure and temperature. During compression at ambient temperature, the differential strain deduced from peak broadening increased significantly with pressure up to 2 GPa, with no clear indication of strain saturation. However, by then, warming the sample above 400°C under 4 GPa, stress relaxation was obviously observed, and all subsequent plastic deformation cycles are characterized again by peak broadening. Our results reveal a remarkable reduction in yield strength as the sintering temperature increases from 400 to 900°C. The low temperature for the onset of stress relaxation has attracted attention regarding the performance of transparent MgAl2O4 nano-ceramics as an engineering material

    Observation of a ppb mass threshoud enhancement in \psi^\prime\to\pi^+\pi^-J/\psi(J/\psi\to\gamma p\bar{p}) decay

    Full text link
    The decay channel ψπ+πJ/ψ(J/ψγppˉ)\psi^\prime\to\pi^+\pi^-J/\psi(J/\psi\to\gamma p\bar{p}) is studied using a sample of 1.06×1081.06\times 10^8 ψ\psi^\prime events collected by the BESIII experiment at BEPCII. A strong enhancement at threshold is observed in the ppˉp\bar{p} invariant mass spectrum. The enhancement can be fit with an SS-wave Breit-Wigner resonance function with a resulting peak mass of M=186113+6(stat)26+7(syst)MeV/c2M=1861^{+6}_{-13} {\rm (stat)}^{+7}_{-26} {\rm (syst)} {\rm MeV/}c^2 and a narrow width that is Γ<38MeV/c2\Gamma<38 {\rm MeV/}c^2 at the 90% confidence level. These results are consistent with published BESII results. These mass and width values do not match with those of any known meson resonance.Comment: 5 pages, 3 figures, submitted to Chinese Physics

    Bright excitons in monolayer transition metal dichalcogenides: from Dirac cones to Dirac saddle points

    Full text link
    In monolayer transition metal dichalcogenides, tightly bound excitons have been discovered with a valley pseudospin that can be optically addressed through polarization selection rules. Here, we show that this valley pseudospin is strongly coupled to the exciton center-of-mass motion through electron-hole exchange. This coupling realizes a massless Dirac cone with chirality index I=2 for excitons inside the light cone, i.e. bright excitons. Under moderate strain, the I=2 Dirac cone splits into two degenerate I=1 Dirac cones, and saddle points with a linear Dirac spectrum emerge in the bright exciton dispersion. Interestingly, after binding an extra electron, the charged exciton becomes a massive Dirac particle associated with a large valley Hall effect protected from intervalley scattering. Our results point to unique opportunities to study Dirac physics, with exciton's optical addressability at specifiable momentum, energy and pseudospin. The strain-tunable valley-orbit coupling also implies new structures of exciton condensates, new functionalities of excitonic circuits, and possibilities for mechanical control of valley pseudospin

    Quantum nonlinear optics with single photons enabled by strongly interacting atoms

    Get PDF
    The realization of strong nonlinear interactions between individual light quanta (photons) is a long-standing goal in optical science and engineering, being of both fundamental and technological significance. In conventional optical materials, the nonlinearity at light powers corresponding to single photons is negligibly weak. Here we demonstrate a medium that is nonlinear at the level of individual quanta, exhibiting strong absorption of photon pairs while remaining transparent to single photons. The quantum nonlinearity is obtained by coherently coupling slowly propagating photons to strongly interacting atomic Rydberg states in a cold, dense atomic gas. Our approach paves the way for quantum-by-quantum control of light fields, including single-photon switching, all-optical deterministic quantum logic and the realization of strongly correlated many-body states of light.National Science Foundation (U.S.)MIT-Harvard Center for Ultracold AtomsUnited States. Air Force Office of Scientific Research. Multidisciplinary University Research Initiative (Quantum Memories

    Search for rare quark-annihilation decays, B --> Ds(*) Phi

    Full text link
    We report on searches for B- --> Ds- Phi and B- --> Ds*- Phi. In the context of the Standard Model, these decays are expected to be highly suppressed since they proceed through annihilation of the b and u-bar quarks in the B- meson. Our results are based on 234 million Upsilon(4S) --> B Bbar decays collected with the BABAR detector at SLAC. We find no evidence for these decays, and we set Bayesian 90% confidence level upper limits on the branching fractions BF(B- --> Ds- Phi) Ds*- Phi)<1.2x10^(-5). These results are consistent with Standard Model expectations.Comment: 8 pages, 3 postscript figues, submitted to Phys. Rev. D (Rapid Communications

    The pancreatic zymogen granule membrane protein, GP2, binds Escherichia coli type 1 Fimbriae

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>GP2 is the major membrane protein present in the pancreatic zymogen granule, and is cleaved and released into the pancreatic duct along with exocrine secretions. The function of GP2 is unknown. GP2's amino acid sequence is most similar to that of uromodulin, which is secreted by the kidney. Recent studies have demonstrated uromodulin binding to bacterial Type 1 fimbria. The fimbriae serve as adhesins to host receptors. The present study examines whether GP2 also shares similar binding properties to bacteria with Type 1 fimbria. Commensal and pathogenic bacteria, including E. coli and Salmonella, express type 1 fimbria.</p> <p>Methods</p> <p>An <it>in vitro </it>binding assay was used to assay the binding of recombinant GP2 to defined strains of <it>E. coli </it>that differ in their expression of Type 1 fimbria or its subunit protein, FimH. Studies were also performed to determine whether GP2 binding is dependent on the presence of mannose residues, which is a known determinant for FimH binding.</p> <p>Results</p> <p>GP2 binds <it>E. coli </it>that express Type 1 fimbria. Binding is dependent on GP2 glycosylation, and specifically the presence of mannose residues.</p> <p>Conclusion</p> <p>GP2 binds to Type 1 fimbria, a bacterial adhesin that is commonly expressed by members of the <it>Enterobacteriacae </it>family.</p
    corecore