58 research outputs found

    Some aspects of an evolvable hardware approach for multiple-valued combinational circuit design

    Get PDF
    In this paper a gate-level evolvable hardware technique for designing multiple-valued (MV) combinational circuits is proposed for the first time. In comparison with the decomposition techniques used for synthesis of combinational circuits previously employed, this new approach is easily adapted for the different types of MV gates associated with operations corresponding to different algebra types and can include other more complex logical expressions (e.g. singlecontrol MV multiplexer called T-gate). The technique is based on evolving the functionality and connectivity of a rectangular array of logic cells. The experimental results show how the success of genetic algorithm depends on the number of columns, the number of rows in circuit structure and levels-back parameter (the number of columns to the left of current cell to which cell input may be connected). We show that the choice of the set of MV gates used radically affects the chances of successful evolution (in terms of number of 100% functional solutions found)

    The effect of timing and frequency of push notifications on usage of a smartphone-based stress management intervention: An exploratory trial

    Get PDF
    Push notifications offer a promising strategy for enhancing engagement with smartphone-based health interventions. Intelligent sensor-driven machine learning models may improve the timeliness of notifications by adapting delivery to a user's current context (e.g. location). This exploratory mixed-methods study examined the potential impact of timing and frequency on notification response and usage of Healthy Mind, a smartphone-based stress management intervention. 77 participants were randomised to use one of three versions of Healthy Mind that provided: intelligent notifications; daily notifications within pre-defined time frames; or occasional notifications within pre-defined time frames. Notification response and Healthy Mind usage were automatically recorded. Telephone interviews explored participants' experiences of using Healthy Mind. Participants in the intelligent and daily conditions viewed (d = .47, .44 respectively) and actioned (d = .50, .43 respectively) more notifications compared to the occasional group. Notification group had no meaningful effects on percentage of notifications viewed or usage of Healthy Mind. No meaningful differences were indicated between the intelligent and non-intelligent groups. Our findings suggest that frequent notifications may encourage greater exposure to intervention content without deterring engagement, but adaptive tailoring of notification timing does not always enhance their use. Hypotheses generated from this study require testing in future work. Trial registration number: ISRCTN67177737 © 2017 Morrison et al

    A multivariate analysis of serum nutrient levels and lung function

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There is mounting evidence that estimates of intakes of a range of dietary nutrients are related to both lung function level and rate of decline, but far less evidence on the relation between lung function and objective measures of serum levels of individual nutrients. The aim of this study was to conduct a comprehensive examination of the independent associations of a wide range of serum markers of nutritional status with lung function, measured as the one-second forced expiratory volume (FEV<sub>1</sub>).</p> <p>Methods</p> <p>Using data from the Third National Health and Nutrition Examination Survey, a US population-based cross-sectional study, we investigated the relation between 21 serum markers of potentially relevant nutrients and FEV<sub>1</sub>, with adjustment for potential confounding factors. Systematic approaches were used to guide the analysis.</p> <p>Results</p> <p>In a mutually adjusted model, higher serum levels of antioxidant vitamins (vitamin A, beta-cryptoxanthin, vitamin C, vitamin E), selenium, normalized calcium, chloride, and iron were independently associated with higher levels of FEV<sub>1</sub>. Higher concentrations of potassium and sodium were associated with lower FEV<sub>1</sub>.</p> <p>Conclusion</p> <p>Maintaining higher serum concentrations of dietary antioxidant vitamins and selenium is potentially beneficial to lung health. In addition other novel associations found in this study merit further investigation.</p

    Rapid and bi-directional regulation of AMPA receptor phosphorylation and trafficking by JNK

    Get PDF
    Jun N-terminal kinases (JNKs) are implicated in various neuropathological conditions. However, physiological roles for JNKs in neurons remain largely unknown, despite the high expression level of JNKs in brain. Here, using bioinformatic and biochemical approaches, we identify the AMPA receptor GluR2L and GluR4 subunits as novel physiological JNK substrates in vitro, in heterologous cells and in neurons. Consistent with this finding, GluR2L and GluR4 associate with specific JNK signaling components in the brain. Moreover, the modulation of the novel JNK sites in GluR2L and GluR4 is dynamic and bi-directional, such that phosphorylation and de-phosphorylation are triggered within minutes following decreases and increases in neuronal activity, respectively. Using live-imaging techniques to address the functional consequence of these activity-dependent changes we demonstrate that the novel JNK site in GluR2L controls reinsertion of internalized GluR2L back to the cell surface following NMDA treatment, without affecting basal GluR2L trafficking. Taken together, our results demonstrate that JNK directly regulates AMPA-R trafficking following changes in neuronal activity in a rapid and bi-directional manner

    Characterization of Coastal Urban Watershed Bacterial Communities Leads to Alternative Community-Based Indicators

    Get PDF
    BACKGROUND: Microbial communities in aquatic environments are spatially and temporally dynamic due to environmental fluctuations and varied external input sources. A large percentage of the urban watersheds in the United States are affected by fecal pollution, including human pathogens, thus warranting comprehensive monitoring. METHODOLOGY/PRINCIPAL FINDINGS: Using a high-density microarray (PhyloChip), we examined water column bacterial community DNA extracted from two connecting urban watersheds, elucidating variable and stable bacterial subpopulations over a 3-day period and community composition profiles that were distinct to fecal and non-fecal sources. Two approaches were used for indication of fecal influence. The first approach utilized similarity of 503 operational taxonomic units (OTUs) common to all fecal samples analyzed in this study with the watershed samples as an index of fecal pollution. A majority of the 503 OTUs were found in the phyla Firmicutes, Proteobacteria, Bacteroidetes, and Actinobacteria. The second approach incorporated relative richness of 4 bacterial classes (Bacilli, Bacteroidetes, Clostridia and alpha-proteobacteria) found to have the highest variance in fecal and non-fecal samples. The ratio of these 4 classes (BBC:A) from the watershed samples demonstrated a trend where bacterial communities from gut and sewage sources had higher ratios than from sources not impacted by fecal material. This trend was also observed in the 124 bacterial communities from previously published and unpublished sequencing or PhyloChip- analyzed studies. CONCLUSIONS/SIGNIFICANCE: This study provided a detailed characterization of bacterial community variability during dry weather across a 3-day period in two urban watersheds. The comparative analysis of watershed community composition resulted in alternative community-based indicators that could be useful for assessing ecosystem health

    The Genome of a Pathogenic Rhodococcus: Cooptive Virulence Underpinned by Key Gene Acquisitions

    Get PDF
    We report the genome of the facultative intracellular parasite Rhodococcus equi, the only animal pathogen within the biotechnologically important actinobacterial genus Rhodococcus. The 5.0-Mb R. equi 103S genome is significantly smaller than those of environmental rhodococci. This is due to genome expansion in nonpathogenic species, via a linear gain of paralogous genes and an accelerated genetic flux, rather than reductive evolution in R. equi. The 103S genome lacks the extensive catabolic and secondary metabolic complement of environmental rhodococci, and it displays unique adaptations for host colonization and competition in the short-chain fatty acid–rich intestine and manure of herbivores—two main R. equi reservoirs. Except for a few horizontally acquired (HGT) pathogenicity loci, including a cytoadhesive pilus determinant (rpl) and the virulence plasmid vap pathogenicity island (PAI) required for intramacrophage survival, most of the potential virulence-associated genes identified in R. equi are conserved in environmental rhodococci or have homologs in nonpathogenic Actinobacteria. This suggests a mechanism of virulence evolution based on the cooption of existing core actinobacterial traits, triggered by key host niche–adaptive HGT events. We tested this hypothesis by investigating R. equi virulence plasmid-chromosome crosstalk, by global transcription profiling and expression network analysis. Two chromosomal genes conserved in environmental rhodococci, encoding putative chorismate mutase and anthranilate synthase enzymes involved in aromatic amino acid biosynthesis, were strongly coregulated with vap PAI virulence genes and required for optimal proliferation in macrophages. The regulatory integration of chromosomal metabolic genes under the control of the HGT–acquired plasmid PAI is thus an important element in the cooptive virulence of R. equi
    corecore