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Abstract. In this paper a gate-level evolvable hardware technique for
designing multiple-valued (MV) combinational circuits is proposed for
the first time. In comparison with the decomposition techniques used
for synthesis of combinational circuits previously employed, this new
approach is easily adapted for the different types of MV gates
associated with operations corresponding to different algebra types
and can include other more complex logical expressions (e.g. single-
control MV multiplexer called T-gate). The technique is based on
evolving the functionality and connectivity of a rectangular array of
logic cells. The experimental results show how the success of genetic
algorithm depends on the number of columns, the number of rows in
circuit structure and levels-back parameter (the number of columns to
the left of current cell to which cell input may be connected). We show
that the choice of the set of MV gates used radically affects the
chances of successful evolution (in terms of number of 100%
functional solutions found).

1  Introduction

Evolvable Hardware extends the concepts of Genetic Algorithms to the evolution of
electronic circuits. A central idea of this is that each possible electronic circuit can be
represented as a chromosome in an evolutionary process in which the standard genetic
operations over the circuits, such as initialization, recombination, elitism, selection are
carried out. The evolving circuits may be evaluated using software simulation models
[4, 7, 8, 12], or in some cases implemented directly in hardware [2, 11]. A number of
investigations have been carried out for synthesis of binary logic circuits [4, 7].

Multiple-Valued (MV) Logic refers to the adoption of logic systems having more
than two levels [3, 9]. It is generally felt that MV logic allows circuits to have
increased functionality with a reduction in wiring density.

In this paper we present a method for the synthesis of combinational MV circuits.
This approach is an extension of evolvable hardware method for binary logic circuits
proposed in [1, 10]. The first attempts to evolve MV arithmetical combinational
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circuits have been discussed in [5, 6] and here we present more detailed results and
further discussion about the most suitable parameters used in this approach. We
examine the most effective geometry which allows the evolution of 100% functional
circuits for a 3-valued one bit adder with carry logic function. We present the results of
a number of experiments which show that the number of rows which allows most fully
functional solutions depends on the number of outputs in logic function, and that the
optimal number of columns depends strongly on the levels-back parameter. The levels-
back parameter defines the number of columns to the left of current cell to which cell
input may be connected. An analysis of different sets of MV gates shows that there is a
particularly effective set of MV gates which allows us to evolve three times as many
100% functional solutions as any other set. A notable feature of this paper is that it
shows how the chosen geometry of circuit design has a strong influence on the GA
performance.

2 The Evolvable Hardware Method for Combinational MV Circuits

The method proposed here is based on evolving combinational MV networks
employing a rectangular array of the logic cells. The logic cells in this array are
uncommitted and can be removed from the network if they prove to be redundant. Let
X={x1, x2, …,xn} and Y={y1, y2, … ym} be input and output variables of implemented r-
valued function respectively. The number of variables in X is denoted by n and the
number of functions in Y is defined by m. The inputs that are made available are logic
constants “0”, “1”, …,“r-1”, where r is the radix, all primary inputs x1, x2, …, xn and
the unary operators acting on the primary inputs, for instance, complement of all
primary inputs ⎯x1, ⎯x2, …, ⎯xn. To illustrate this let us consider a 3-input 3-output 3-
valued logic function which will be implemented on a 4 x 4 array of 3-valued logic
cells with two inputs and one output (Figure 1). Input encoding is carried out as
follows. The number of logic constants encoded as 0, 1, 2 respectively is 3. The set of
primary inputs X={x1, x2, x3} are labeled with 3, 4 and 5 output numbers respectively.
The inverted inputs ⎯x1, ⎯x2, ⎯x3  are labeled as 6, 7 and 8 correspondingly.

Each cell in the array is labeled with an output number. The first cell having an
output is labeled (2n + r). These are numbered connection points, which are important
for the network representation of the chromosome (discussed below). Each cell is
described by (k+1) integers, where k is the number of inputs in the logic MV cell. The
first k numbers describe the cell inputs and the final integer defines the functional type
of the cell. If this final integer is positive then the cell is assumed to be a MUX gate,
otherwise it refers to one of the gate types listed in Table 1. The gate types listed in
Table 1 have the following definitions (for an r valued 2-input function). Note that the
over-bar in all the expressions in Table 1 refers to the complement (or inversion)
operator defined below:

MAX(x1 , x2) is the maximum of inputs x1 and x2 and in the binary case becomes
identical to the inclusive-OR operation. MIN(x1 , x2) is the minimum of inputs x1 and x2

and in the binary case becomes identical to the AND operation. TSUM(x1 , x2) is
referred to as the truncated sum operator and is defined as MIN(x1+x2 , r-1), this again
reduces to the inclusive-OR operation for the binary case. The truncated product
operator TPRODUCT(x1 , x2) is defined as MAX(x1+ x2-(r-1) , 0), which in the binary



case becomes the AND operation. MODSUM(x1 , x2) and MODPRODUCT(x1 , x2) are
defined as (x1+x2) and x1⋅x2  in modulo r arithmetic. The former becoming the
exclusive-OR operation in the binary case, while the latter reduces to the AND
function. Finally the complement of a r-valued symbol x, indicated with an over-bar is
defined as (r-1) –x and represents the NOR operation in binary logic.

 The user can choose any subset of this list of gates and later we examine the
relative performances of various sub-sets. Note that the list of MV gates presented in
Table 1 is just a small subset of possible gates proposed in the literature [5, 6].

In the discussion which follows we will use the following terminology. Associated
with each rectangular array of logic cells are three geometrical constants: the number
of rows, Nrows, the number of columns, Ncolumns, and the connectivity of the circuit
which we refer to as the levels-back parameter, l.
The levels-back parameter l for a cell j (j = 1, ..., Nrows) in column i (i = 1, …, Ncolumns)
defines how many columns of cells to the left of  column i can have their outputs
connected to the inputs of the cell, this also applies to the final circuit outputs, and if (i-
l) <=l, then any of the primary inputs can be connected to the cell in question.  Also
the primary outputs can be connected to the cell outputs according to the levels-back
parameter. For example if the levels-back parameter is 2 for the circuit geometry
shown in Figure 1, then the cells numbered from 17 to 21 can be additionally defined
as outputs of this circuit.

A chromosome defines the
connections in the network
between the MV logic cells. In
a circuit of 2-input, 3-valued
logic gates each gate is
represented by triple of integer
numbers <c1c2c3> which define
the connectivity between gates
and the type of the examined
gate.
The i-th cell is represented in
the circuit by the integers
ci=<ci

1ci
2ci

3>. Gene ci
3 defines

the type of MV gate. If  ci
3<0,

then the i-th cell is two-input
one-output logic gate, else
when ci

3≥0 the i-th cell a 3-1
MUX gate with single control
input ci

3. In the case of two-
input one-output logic gate, the
genes ci

1 and ci
2 represent the

first and second input of logic
gate respectively. If ci

1, ci
2 < (2n+r), then the inputs of the i-th gate are connected to

the primary inputs of circuit, otherwise these inputs are linked to the outputs of the ci
1-

th and ci
2-th gates respectively. The gene ci

3<0 defines the type of logic gates which are
coded according to Table 1. For example the cells numbered 13 and 20 shown in F i g

T a b l e  1 .  Cell gate functionality according to negative
gene value in chromosome

Gene
value

Gate function

-1 MAX(x1,x2)=x1∨x2

-2
2121 ),( xxxxMAX ∨=

-3 TSUM (x1, x2)=x1⊕x2

-4 ),( 21 xxTSUM 21 xx ⊕=
-5 TPRODUCT (x1, x2)=x1⊗x2

-6
2121 ),( xxxxTPRODUCT ⊗=

-7 MIN (x1, x2)=x1∧x2

-8
2121 ),( xxxxMIN ∧=

-9 MODSUM (x1, x2)  = x1+ x2

-10
2121 ),( xxxxMODSUM +=  

-11 MODPRODUCT (x1, x2) = x1⋅x2

-12
2121 ),( xxxxMODPRODUCT ⋅=

-13 x



1  are 2-input 3-valued gates. The cell 13 describes function

),2( 113 xMODPRODUCTf =  because gene c13
1=2 defines logical constant, c13

2=3

corresponds to the primary variable x1 and the gene c13
3=-12 describes

MODPRODUCT gate with inverted output. The cell 20 describes logic function

),( 13320 fxTPRODUCTf = , where function f13 denotes behavior of cell 13. The gene

c20
1=8 determines the inverted variable ⎯x3. The gene c20

2=13 shows the connection
between 13 and 20 cells and is considered as second variable of TPRODUCT function.
The third gene c20

3=-5 encodes TPRODUCT type for the cell 20. So, the output of cell

20 can be described as )),2(,( 1320 xMODPRODUCTxTPRODUCTf = . In the case of

MUX gate the gene ci
1 describes the first input of MUX gate, the next inputs of MUX

gate are connected to the cells numbered (ci
1+1), (ci

1+2), …, (ci
1+r-1). Note that the

gene ci
2 is not used in this case. For example the cell 12 shown in F i g  1 is T-gate

(MUX gate) with control input 3 (c12
3=3=x1) and with inputs 4, 5 and 6 respectively

(the first input is c12
1=4=x2), the second input is 5=x3 and the third input is 6=⎯x1. Note

that the gene c12
2=7 is not used. The last genes of chromosome describe the m outputs

of implemented function and define the outputs of cell, which should be considered as
circuit outputs. For instance the output of cell 20 defines the logic function y1

described  by the expression: )),2(,( 13201 xMODPRODUCTxTPRODUCTfy == .
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F i g  1 . A 4 x 4 geometry of uncommitted MV logic cells with netlist numbering



The fitness function is defined as the percentage of the correct output digits for
every input combination of the implemented MV functions. The uniform crossover and
mutation operators are built in the traditional way for integer representation
chromosome. The number of genes mutated in current population is defined by the
mutation rate. The crossover rate shows how many chromosomes breed in current
population. Elitism is used to promote the best chromosome obtained from one
population to the next. The selection operation used is a variation on standard
tournament selection (of size two) in which the winner of the tournament (the
chromosome with the greater fitness) between two chromosomes chosen at random is
accepted with certain probability (otherwise the loser of the tournament is chosen).
This probability is called the tournament discriminator. If this probability is set to
unity, then the tournament becomes the standard tournament sized two selection
mechanisms. If this probability is less than unity, then the selection pressure on the
population is reduced. Note that often the chromosome contains cells that are not
actually connected to any of the outputs. The process of removing these redundant
cells is carried out for chromosomes with 100% functionality after the GA has
completed.

3 Relationship Between the Levels-back Parameter, Circuit
Geometry and GA Performance

The experiments in this paper were
aimed at correctly evolving the
functionality of a one-digit 3-valued
adder with output carry. This is a
circuit with 2 inputs and 2 outputs
and requiring 9 input and output
conditions for full specification (see
Appendix 1.). The main purpose of
these experiments was to investigate
how the levels-back parameter and
circuit geometry affect the

performance of the GA. We investigate how the percentage of the 100% functionality
circuit evolved by the GA and mean fitness values depend on the levels-back
parameter and the number of rows and columns. In this series of experiments the
functional basis contains all the MV gates shown in Table 1. The functional basis is
the set of MV operators used to synthesize the circuit. The logical constants as well as
the primary and inverted input variables can only be connected in accordance with the
levels-back parameter. This prevents cells becoming wires in the circuit. For example
cell MAX with one of the input 0 passes the signal of another input to next cell without
change. The GA parameters used here are shown in T a b l e  1 .

Table 2. Initial data

Population size 30
Crossover rate 100
Mutation rate 15
Number of generations 200
Number of GA runs 100
PLA file processing Add32.pla
Radix of logic 3
Tournament Discriminator 70
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Fig. 2. Dependence the mean fitness on the number of columns for the different number of rows

Figures 2 and 3(a) show that the GA performance is not influenced strongly by the
number of rows. However it is clear that the number of columns in the chosen
geometry has a significant effect.

We can see that the number of rows used in the geometry has some effect since
with l=1 the number of rows must be at least as large as the number of outputs.
Associated with every logic function having a minimum number of logic cells is a
minimum depth (number of columns) which we denote, d. If the number of columns is
less than d then clearly we cannot evolve 100% solutions.
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Fig. 3. Dependence of percentage 100% cases and the mean fitness on the number of rows for
the different number of columns

Examining Figure 4 (a)-(d) (note that the graphs have been plotted as continuous
functions for ease of viewing) we see that as l increases the minimum geometry at
which we can obtain 100% solutions has to increase. This is understandable since the
probability that we would connect the inputs  to the first column of cells and the
outputs to the last column of cells decreases quickly. Thus the lowest cut-off point for
circuit geometry (which indicates the minimum number of columns at which the 100%
functionality circuit are not evolved) must increase.  The marked cut-off of the highest
point, b, appears to indicate that only circuits within a certain size range are likely to be



evolved so that when the geometry becomes too large (in terms of columns) it becomes
no longer possible to connect up even the largest circuit.

There are certainly a number of interesting features of these graphs (i.e. the marked
modality) and it looks as if there are species of circuits each with a characteristic size
which become more or less likely to be evolved as the number of columns of cells and
the levels-back parameter are altered.
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F i g .  4 .  Dependence percentage 100% cases on the number of columns for the different
number of rows (levels-back = 2, 3, 4 and 5)

The dependence of the mean fitness with the number of columns is shown in Figure 5
for levels-back parameters equal to 2 and 3 respectively. Points a′ and a′′ show the
minimum fitness at which 100% functionality for the one-digit 3-valued adder with
carry can be achieved. At these points the number of columns in the circuit geometry



are 8 and 9 respectively. It is clear that if the mean fitness is less than 60% then the
probability of obtaining a circuit with 100% functionality drops to zero. If the mean
fitness is 85% or more for the optimal number of columns (points b′ and b′′) circuits
with 100% functionality can be evolved with the highest probability.
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F i g .  5 .  Dependence of the mean fitness and the percentage of 100% cases on the number of
columns.
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4. Influence of the MV gate set on the GA performance

In this section we will discuss  how GA performance depends on the set of MV gates
chosen for circuit design.

Figure 6 shows how GA performance depends on the set of MV gates which are
used in the circuit design. It was found that of the gate sets used the best set was MIN-
MODSUM-COMPLEMENT. This basis is startlingly better than some of the other
bases. This set allows a five fold improvement in the GA performance in comparison
with the MIN- MAX- TSUM- TPRODUCT- MODSUM- MODPRODUCT- COMPLEMENT
set and a ten fold improvement over the MIN-MAX-TSUM-TPRODUCT-MODSUM-
MODPRODUCT set. Note that the attempts to evolve circuits using only MIN-
MODSUM-TSUM gates or MAX-MIN-COMPLEMENT gates didn’t give any 100%
circuits. These experiments were carried out using the same initial parameters as before
but  with a fixed number of generations equal to 500. For each MV basis the GA runs
100 times. The vertical axis of Fig.6 shows the percentage of MV logic circuits
evolved with 100% functionality in 100 runs of the GA.
It is interesting to note that we expected to receive the highest percentage of 100%
functionality for the case when we use all well-known MV gates because it gives a
bigger choice of any MV gate for evolved circuit than any particular functionally
complete basis with has a much more restricted number of MV gates. However
experimental results show that the correct choice of MV logic gate set allows us
significantly increase the GA performance without changing any of the GA parameters.
This indicates the importance of choosing the architecture on which to conduct the
evolutionary process, and indeed, such a choice has a much more significant impact on
the success of the evolution than fine tuning the GA parameters.

5  AN EVOLVED ONE-DIGIT 3-VALUED ADDER WITH OUTPUT CARRY

CIRCUIT

The arithmetic MV circuits synthesized using the proposed method have an unusual
structure. It is for this reason that the obtained results are very interesting and allow us
to consider arithmetic MV circuits from a new viewpoint.

Now we present some of the arithmetical circuits that we have so far been able to
evolve using the above method. This circuit implements the 3-valued one-digit adder
with output carry.
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MODSUM

MAX-NOR

MAXMIN-NOR
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Carry

Sumx1
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(a) (b)

F i g .  7 .   Evolved solution for the one-digit 3-valued adder with output carry using (a) MIN-
MAX-MODSUM (b) TSUM-MIN-MODSUM gates (note small circles represent inversion)



Using only MIN-MAX-MODSUM allowed the circuit shown in Figure 7(a) to be
evolved (with a 3 column , 2 row geometry). The sum component in this design is
implemented in the optimum way as it uses only one MODSUM gate. The analytical
description of MV logic gates is given in T a b l e  1 . This circuit can be described
analytically as follows:

21 xxysum +=

)()1)(( 2121 xxxxycarry +∨∨∧=
When a set of basic gates had been changed to (with the 2x2 geometry) TSUM,

MAX, MIN and MODSUM the design shown in Figure 7 (b) was evolved. The sum
component in this circuit is the familiar sum-digit 3-valued circuit of conventional
adders. Note that the sum and carry components in this design are implemented
separately and can be expressed as follows:

21 xxysum +=

.121 ∧⊕= xxycarry

When the geometry was constrained to 2x2 and the set of basis gates chosen
contained only MODSUM, TSUM and MAX gates with direct and inverted inputs and
outputs the optimum designs shown in Figure 8 was obtained. This was a gratifying
result to obtain as it is clear that these designs are an optimum solution. These circuits
were previously unknown. The analytical representation of these designs are shown in
Fig. 8 also.
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F i g .  8 .   Evolved optimum solution for the one-digit 3-valued full adder using MODSUM,
TSUM and MAX

Evolving the one-digit 3-valued adder was easier to do with a larger geometry but
resulted in a less efficient circuit. For instance, the circuits shown in Figure 7 have also
been obtained with much larger geometries (3x4, 4x3, 4x4, 5x5, 4x6, 4x8, 4x10).
Choosing too small a geometry ran the risk that no 100% solutions could be found
because it was physically impossible to build the required functionality with few gates.



While using too large a geometry simply gave the GA too many possibilities to work
with and it struggled to find the fully functional solutions.

6  SUMMARY

In this paper it has been shown that by evolving a linear chromosome of cell
functionalities and connectivities based on a rectangular array of logic cells it is
possible to evolve both traditional and novel designs for arithmetical MV circuits. The
method uses a genetic algorithm to evolve both a netlist structure and functionality for
MV logic cells. The fitness function tests the functionality of the circuit. This approach
for the first time allows us to synthesize combinational MV circuits in different
functionally complete basis or a combination of these. The method allows the synthesis
of very novel circuit structures, which have never been seen before. We have evolved
the 3-valued 2-digit adder with carry as an example. The results of some of the
experiments showed that it is possible to improve the GA performance considerably by
choosing carefully the number of columns of cells used and the levels-back parameter,
but that the number of rows in the geometry was less important.

There are still many avenues for further work. Other ways of representing
rectangular arrays of logic cells may be devised and also, the relationship between cell
connectivity and the evolvability of designs has still to be explored, this would involve
examining a suitable concept of cell-neighborhood. It is a feature of the current
technique that one has to specify the functionality of the target circuit using a complete
truth table, however this is impractical for circuits with large numbers of inputs.
Further investigations are under way to see if these findings are carried over to other
MV benchmarks.
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APPENDIX 1.

Truth table for 3-valued 2-input adder with output carry (Add32.pla)

x1 x2 carry sum
0 0 0 0
0 1 0 1
0 2 0 2
1 0 0 1
1 1 0 2
1 2 1 0
2 0 0 2
2 1 1 0
2 2 1 1




