133 research outputs found
Intra-Host Evolution Analyses in an Immunosuppressed Patient Supports SARS-CoV-2 Viral Reservoir Hypothesis.
Throughout the SARS-CoV-2 pandemic, several variants of concern (VOCs) have been identified, many of which share recurrent mutations in the spike glycoprotein's receptor-binding domain (RBD). This region coincides with known epitopes and can therefore have an impact on immune escape. Protracted infections in immunosuppressed patients have been hypothesized to lead to an enrichment of such mutations and therefore drive evolution towards VOCs. Here, we present the case of an immunosuppressed patient that developed distinct populations with immune escape mutations throughout the course of their infection. Notably, by investigating the co-occurrence of substitutions on individual sequencing reads in the RBD, we found quasispecies harboring mutations that confer resistance to known monoclonal antibodies (mAbs) such as S:E484K and S:E484A. These mutations were acquired without the patient being treated with mAbs nor convalescent sera and without them developing a detectable immune response to the virus. We also provide additional evidence for a viral reservoir based on intra-host phylogenetics, which led to a viral substrain that evolved elsewhere in the patient's body, colonizing their upper respiratory tract (URT). The presence of SARS-CoV-2 viral reservoirs can shed light on protracted infections interspersed with periods where the virus is undetectable, and potential explanations for long-COVID cases
Autocorrelation of the Ground Vibrations Recorded by the SEIS-InSight Seismometer on Mars
Since early February 2019, the SEIS (Seismic Experiment for Interior Structure) seismometer deployed at the surface of Mars in the framework of the InSight mission has been continuously recording the ground motion at Elysium Planitia. In this study, we take advantage of this exceptional data set to put constraints on the crustal properties of Mars using seismic interferometry (SI). To carry out this task, we first examine the continuous records from the very broadband seismometer. Several deterministic sources of environmental noise are identified and specific preprocessing strategies are presented to mitigate their influence. Applying the principles of SI to the single-station configuration of InSight, we compute, for each Sol and each hour of the martian day, the diagonal elements of the time-domain correlation tensor of random ambient vibrations recorded by SEIS. A similar computation is performed on the diffuse waveforms generated by more than a hundred Marsquakes. A careful signal-to-noise ratio analysis and an inter-comparison between the two datasets suggest that the results from SI are most reliable in a narrow frequency band around 2.4 Hz, where an amplification of both ambient vibrations and seismic events is observed. The average autocorrelation functions (ACFs) contain well identifiable seismic arrivals, that are very consistent between the two datasets. Interpreting the vertical and horizontal ACFs as, respectively, the P- and S- seismic reflectivity below InSight, we propose a simple stratified velocity model of the crust, which is mostly compatible with previous results from receiver function analysis. Our results are discussed and compared to recent works from the literature.This study is InSight contribution number 164. The authors acknowledge both âUniversitĂ© FĂ©dĂ©rale de Toulouse Midi PyrĂ©nĂ©esâ and the âRĂ©gion Occitanieâ for funding the PhD grant of Nicolas Compaire. The French authors acknowledge the French Space Agency CNES and ANR (ANR-14-CE36-0012-02 and ANR-19-CE31-0008-08) for funding the InSight Science analysis
Seismic Constraints on the Thickness and Structure of the Martian Crust from InSight
NASAÂżs InSight mission [1] has for
the first time placed a very broad-band seismometer on
the surface of Mars. The Seismic Experiment for
Interior Structure (SEIS) [2] has been collecting
continuous data since early February 2019. The main
focus of InSight is to enhance our understanding of the
internal structure and dynamics of Mars, which includes
the goal to better constrain the crustal thickness of the
planet [3]. Knowing the present-day crustal thickness of
Mars has important implications for its thermal
evolution [4] as well as for the partitioning of silicates
and heat-producing elements between the different
layers of Mars. Current estimates for the crustal
thickness of Mars are based on modeling the
relationship between topography and gravity [5,6], but
these studies rely on different assumptions, e.g. on the
density of the crust and upper mantle, or the bulk silicate
composition of the planet and the crust. The resulting
values for the average crustal thickness differ by more
than 100%, from 30 km to more than 100 km [7].
New independent constraints from InSight will be
based on seismically determining the crustal thickness
at the landing site. This single firm measurement of
crustal thickness at one point on the planet will allow to
constrain both the average crustal thickness of Mars as
well as thickness variations across the planet when
combined with constraints from gravity and topography
[8]. Here we describe the determination of the crustal
structure and thickness at the InSight landing site based
on seismic receiver functions for three marsquakes
compared with autocorrelations of InSight data [9].We acknowledge NASA, CNES, partner agencies and institutions (UKSA, SSO,DLR, JPL, IPGP-CNRS, ETHZ, IC, MPS-MPG) and the operators of JPL, SISMOC, MSDS, IRIS-DMC and PDS for providing SEED SEIS data. InSight data is archived in the PDS, and a full list of archives in the Geosciences, Atmospheres, and Imaging nodes is at https://pds-geosciences.wustl.edu/missions/insight/. This work was partially carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. ©2021, California Institute of Technology. Government sponsorship acknowledge
Stochastic Inversion of P-to-S Converted Waves for Mantle Composition and Thermal Structure: Methodology and Application
We present a new methodology for inverting PâtoâS receiver function (RF) waveforms directly for mantle temperature and composition. This is achieved by interfacing the geophysical inversion with selfâconsistent mineral phase equilibria calculations from which rock mineralogy and its elastic properties are predicted as a function of pressure, temperature, and bulk composition. This approach anchors temperatures, composition, seismic properties, and discontinuities that are in mineral physics data, while permitting the simultaneous use of geophysical inverse methods to optimize models of seismic properties to match RF waveforms. Resultant estimates of transition zone (TZ) topography and volumetric seismic velocities are independent of tomographic models usually required for correcting for upper mantle structure. We considered two endâmember compositional models: the equilibrated equilibrium assemblage (EA) and the disequilibrated mechanical mixture (MM) models. Thermal variations were found to influence arrival times of computed RF waveforms, whereas compositional variations affected amplitudes of waves converted at the TZ discontinuities. The robustness of the inversion strategy was tested by performing a set of synthetic inversions in which crustal structure was assumed both fixed and variable. These tests indicate that unaccountedâfor crustal structure strongly affects the retrieval of mantle properties, calling for a twoâstep strategy presented herein to simultaneously recover both crustal and mantle parameters. As a proof of concept, the methodology is applied to data from two stations located in the Siberian and East European continental platforms.This work
was supported by a grant from the
Swiss National Science Foundation
(SNF project 200021_159907). B. T. was
funded by a Délégation CNRS and
Congé pour Recherches et Conversion
Thématique from the Université de
Lyon to visit the Research School of
Earth Sciences (RSES), The Australian
National University (ANU). B. T. has
received funding from the European
Unionâs Horizon 2020 research and
innovation programme under the
Marie Sklodowska-Curie grant
agreement 79382
Phosphoprotein Associated with Glycosphingolipid-Enriched Microdomains Differentially Modulates Src Kinase Activity in Brain Maturation
Src family kinases (SFK) control multiple processes during brain development and function. We show here that the phosphoprotein associated with glycosphigolipid-enriched microdomains (PAG)/Csk binding protein (Cbp) modulates SFK activity in the brain. The timing and localization of PAG expression overlap with Fyn and Src, both of which we find associated to PAG. We demonstrate in newborn (P1) mice that PAG negatively regulates Src family kinases (SFK). P1 Pag1-/- mouse brains show decreased recruitment of Csk into lipid rafts, reduced phosphorylation of the inhibitory tyrosines within SFKs, and an increase in SFK activity of >/â=â50%. While in brain of P1 mice, PAG and Csk are highly and ubiquitously expressed, little Csk is found in adult brain suggesting altered modes of SFK regulation. In adult brain Pag1-deficiency has no effect upon Csk-distribution or inhibitory tyrosine phosphorylation, but kinase activity is now reduced (â20â30%), pointing to the development of a compensatory mechanism that may involve PSD93. The distribution of the Csk-homologous kinase CHK is not altered. Importantly, since the activities of Fyn and Src are decreased in adult Pag1-/- mice, thus presenting the reversed phenotype of P1, this provides the first in vivo evidence for a Csk-independent positive regulatory function for PAG in the brain
The interior of Mars as seen by InSight (Invited)
InSight is the first planetary mission dedicated to exploring the whole interior of a planet using geophysical methods, specifically seismology and geodesy. To this end, we observed seismic waves of distant marsquakes and inverted for interior models using differential travel times of phases reflected at the surface (PP, SS...) or the core mantle-boundary (ScS), as well as those converted at crustal interfaces. Compared to previous orbital observations1-3, the seismic data added decisive new insights with consequences for the formation of Mars: The global average crustal thickness of 24-75 km is at the low end of pre-mission estimates5. Together with the the thick lithosphere of 450-600 km5, this requires an enrichment of heat-producing elements in the crust by a factor of 13-20, compared to the primitive mantle. The iron-rich liquid core is 1790-1870 km in radius6, which rules out the existence of an insulating bridgmanite-dominated lower mantle on Mars. The large, and therefore low-density core needs a high amount of light elements. Given the geochemical boundary conditions, Sulfur alone cannot explain the estimated density of ~6 g/cm3 and volatile elements, such as oxygen, carbon or hydrogen are needed in significant amounts. This observation is difficult to reconcile with classical models of late formation from the same material as Earth. We also give an overview of open questions after three years of InSight operation on the surface of Mars, such as the potential existence of an inner core or compositional layers above the CM
Autocorrelation of the Ground Vibrations Recorded by the SEISâInSight Seismometer on Mars
Since early February 2019, the SEIS (Seismic Experiment for Interior Structure)
seismometer deployed at the surface of Mars in the framework of the InSight mission has been
continuously recording the ground motion at Elysium Planitia. In this study, we take advantage of this
exceptional data set to put constraints on the crustal properties of Mars using seismic interferometry (SI).
To carry out this task, we first examine the continuous records from the very broadband seismometer.
Several deterministic sources of environmental noise are identified and specific preprocessing strategies
are presented to mitigate their influence. Applying the principles of SI to the single-station configuration
of InSight, we compute, for each Sol and each hour of the martian day, the diagonal elements of the
time-domain correlation tensor of random ambient vibrations recorded by SEIS. A similar computation
is performed on the diffuse waveforms generated by more than a hundred Marsquakes. A careful signal-
to-noise ratio analysis and an inter-comparison between the two datasets suggest that the results from
SI are most reliable in a narrow frequency band around 2.4 Hz, where an amplification of both ambient
vibrations and seismic events is observed. The average autocorrelation functions (ACFs) contain well
identifiable seismic arrivals, that are very consistent between the two datasets. Interpreting the vertical
and horizontal ACFs as, respectively, the P- and S- seismic reflectivity below InSight, we propose a simple
stratified velocity model of the crust, which is mostly compatible with previous results from receiver
function analysis. Our results are discussed and compared to recent works from the literature
Dynamic control of proinflammatory cytokines Il-1ÎČ and Tnf-α by macrophages in zebrafish spinal cord regeneration
Spinal cord injury leads to a massive response of innate immune cells in non-regenerating mammals, but also in successfully regenerating zebrafish. However, the role of the immune response in successful regeneration is poorly defined. Here we show that inhibiting inflammation reduces and promoting it accelerates axonal regeneration in spinal-lesioned zebrafish larvae. Mutant analyses show that peripheral macrophages, but not neutrophils or microglia, are necessary for repair. Macrophage-less irf8 mutants show prolonged inflammation with elevated levels of Tnf-α and Il-1ÎČ. Inhibiting Tnf-α does not rescue axonal growth in irf8 mutants, but impairs it in wildtype animals, indicating a pro-regenerative role of Tnf-α. In contrast, decreasing Il-1ÎČ levels or number of Il-1ÎČ+ neutrophils rescue functional regeneration in irf8 mutants. However, during early regeneration, interference with Il-1ÎČ function impairs regeneration in irf8 and wildtype animals. Hence, inflammation is dynamically controlled by macrophages to promote functional spinal cord regeneration in zebrafish
Targeting Vascular NADPH Oxidase 1 Blocks Tumor Angiogenesis through a PPARα Mediated Mechanism
Reactive oxygen species, ROS, are regulators of endothelial cell migration, proliferation and survival, events critically involved in angiogenesis. Different isoforms of ROS-generating NOX enzymes are expressed in the vasculature and provide distinct signaling cues through differential localization and activation. We show that mice deficient in NOX1, but not NOX2 or NOX4, have impaired angiogenesis. NOX1 expression and activity is increased in primary mouse and human endothelial cells upon angiogenic stimulation. NOX1 silencing decreases endothelial cell migration and tube-like structure formation, through the inhibition of PPARα, a regulator of NF-ÎșB. Administration of a novel NOX-specific inhibitor reduced angiogenesis and tumor growth in vivo in a PPARα dependent manner. In conclusion, vascular NOX1 is a critical mediator of angiogenesis and an attractive target for anti-angiogenic therapies
- âŠ