28 research outputs found
Combined Tevatron upper limit on gg->H->W+W- and constraints on the Higgs boson mass in fourth-generation fermion models
Report number: FERMILAB-PUB-10-125-EWe combine results from searches by the CDF and D0 collaborations for a standard model Higgs boson (H) in the process gg->H->W+W- in p=pbar collisions at the Fermilab Tevatron Collider at sqrt{s}=1.96 TeV. With 4.8 fb-1 of integrated luminosity analyzed at CDF and 5.4 fb-1 at D0, the 95% Confidence Level upper limit on \sigma(gg->H) x B(H->W+W-) is 1.75 pb at m_H=120 GeV, 0.38 pb at m_H=165 GeV, and 0.83 pb at m_H=200 GeV. Assuming the presence of a fourth sequential generation of fermions with large masses, we exclude at the 95% Confidence Level a standard-model-like Higgs boson with a mass between 131 and 204 GeV.We combine results from searches by the CDF and D0 collaborations for a standard model Higgs boson (H) in the process gg→H→W+W- in pp̅ collisions at the Fermilab Tevatron Collider at √s=1.96 TeV. With 4.8 fb-1 of integrated luminosity analyzed at CDF and 5.4 fb-1 at D0, the 95% confidence level upper limit on σ(gg→H)×B(H→W+W-) is 1.75 pb at mH=120 GeV, 0.38 pb at mH=165 GeV, and 0.83 pb at mH=200 GeV. Assuming the presence of a fourth sequential generation of fermions with large masses, we exclude at the 95% confidence level a standard-model-like Higgs boson with a mass between 131 and 204 GeV.Peer reviewe
Motor unit characteristics after selective nerve transfers
Selective nerve transfers are used in biological and bionic extremity reconstruction to restore and improve extremity function. Here, peripheral nerves are rerouted to various target muscles, and thereby the structural composition of motor units is surgically altered. Previous studies have shown a high success rate of successful reinnervation of above 90% after these nerve transfers. In targeted muscle reinnervation, nerve transfers are applied to reroute amputated nerves to more proximal muscles in the stump and thereby increase the number of prosthetic control signals. Because donor nerves physiologically supply multiple muscles but are transferred to a single target muscle, the innervation ratio between donor and recipient is substantially altered. This changes the characteristics of the motor unit of the target muscles that we extensively investigated in a novel nerve transfer animal model. In this chapter, we illustrate this model, the effect of nerve transfers on motor unit physiology, as well as the implications on improving the interface between man and machine in prosthetic extremity reconstruction. In addition, first results on the effect of targeted muscle reinnervation on human motor unit physiology are described