182 research outputs found

    Active versus passive maintenance of visual nonverbal memory

    Get PDF
    Forgetting over the short-term has challenged researchers for more than a century, largely because of difficulty in controlling what goes on within the memory retention interval. But the “recent negative probes” procedure offers a valuable paradigm, by examining influences of (presumably) unattended memoranda from prior trials. Here we used a recent probes task to investigate forgetting for visual non-verbal short-term memory. Target stimuli (2 visually presented abstract shapes) on a trial were followed after a retention interval by a probe, and participants indicated whether the probe matched one of the target items. Proactive interference, and hence memory for old trial probes, was observed whereby participants were slowed in rejecting a non-matching probe on the present trial that nevertheless matched a target item on the previous trial (a recent negative probe). The attraction of the paradigm is that, by uncovering proactive influences of past trial probe stimuli, it is argued that active maintenance in memory of those probes is unlikely. In two experiments we recorded such proactive interference of prior trial items over a range of interstimulus (ISI) and intertrial (ITI) intervals (between 1 and 6 seconds respectively). Consistent with a proposed two-process memory conception (the active-passive memory model or APM), actively maintained memories on current trials decayed but passively “maintained,” or unattended, visual memories of stimuli on past trials did not

    On Quality Control Measures in Genome-Wide Association Studies: A Test to Assess the Genotyping Quality of Individual Probands in Family-Based Association Studies and an Application to the HapMap Data

    Get PDF
    Allele transmissions in pedigrees provide a natural way of evaluating the genotyping quality of a particular proband in a family-based, genome-wide association study. We propose a transmission test that is based on this feature and that can be used for quality control filtering of genome-wide genotype data for individual probands. The test has one degree of freedom and assesses the average genotyping error rate of the genotyped SNPs for a particular proband. As we show in simulation studies, the test is sufficiently powerful to identify probands with an unreliable genotyping quality that cannot be detected with standard quality control filters. This feature of the test is further exemplified by an application to the third release of the HapMap data. The test is ideally suited as the final layer of quality control filters in the cleaning process of genome-wide association studies. It identifies probands with insufficient genotyping quality that were not removed by standard quality control filtering

    The +4G Site in Kozak Consensus Is Not Related to the Efficiency of Translation Initiation

    Get PDF
    The optimal context for translation initiation in mammalian species is GCCRCCaugG (where R = purine and “aug” is the initiation codon), with the -3R and +4G being particularly important. The presence of +4G has been interpreted as necessary for efficient translation initiation. Accumulated experimental and bioinformatic evidence has suggested an alternative explanation based on amino acid constraint on the second codon, i.e., amino acid Ala or Gly are needed as the second amino acid in the nascent peptide for the cleavage of the initiator Met, and the consequent overuse of Ala and Gly codons (GCN and GGN) leads to the +4G consensus. I performed a critical test of these alternative hypotheses on +4G based on 34169 human protein-coding genes and published gene expression data. The result shows that the prevalence of +4G is not related to translation initiation. Among the five G-starting codons, only alanine codons (GCN), and glycine codons (GGN) to a much smaller extent, are overrepresented at the second codon, whereas the other three codons are not overrepresented. While highly expressed genes have more +4G than lowly expressed genes, the difference is caused by GCN and GGN codons at the second codon. These results are inconsistent with +4G being needed for efficient translation initiation, but consistent with the proposal of amino acid constraint hypothesis

    A phase-I trial of pre-operative, margin intensive, stereotactic body radiation therapy for pancreatic cancer: the 'SPARC' trial protocol.

    Get PDF
    BACKGROUND: Standard therapy for borderline-resectable pancreatic cancer in the UK is surgery with adjuvant chemotherapy, but rates of resection with clear margins are unsatisfactory and overall survival remains poor. Meta-analysis of single-arm studies shows the potential of neo-adjuvant chemo-radiotherapy but the relative radio-resistance of pancreatic cancer means the efficacy of conventional dose schedules is limited. Stereotactic radiotherapy achieves sufficient accuracy and precision to enable pre-operative margin-intensive dose escalation with the goal of increasing rates of clear resection margins and local disease control. METHODS/DESIGN: SPARC is a "rolling-six" design single-arm study to establish the maximum tolerated dose for margin-intensive stereotactic radiotherapy before resection of pancreatic cancer at high risk of positive resection margins. Eligible patients will have histologically or cytologically proven pancreatic cancer defined as borderline-resectable per National Comprehensive Cancer Network criteria or operable tumour in contact with vessels increasing the risk of positive margin. Up to 24 patients will be recruited from up to 5 treating centres and a 'rolling-six' design is utilised to minimise delays and facilitate ongoing recruitment during dose-escalation. Radiotherapy will be delivered in 5 daily fractions and surgery, if appropriate, will take place 5-6 weeks after radiotherapy. The margin-intense radiotherapy concept includes a systematic method to define the target volume for a simultaneous integrated boost in the region of tumour-vessel infiltration, and up to 4 radiotherapy dose levels will be investigated. Maximum tolerated dose is defined as the highest dose at which no more than 1 of 6 patients or 0 of 3 patients experience a dose limiting toxicity. Secondary endpoints include resection rate, resection margin status, response rate, overall survival and progression free survival at 12 and 24 months. Translational work will involve exploratory analyses of the cytological and humoral immunological responses to stereotactic radiotherapy in pancreatic cancer. Radiotherapy quality assurance of target definition and radiotherapy planning is enforced with pre-trial test cases and on-trial review. Recruitment began in April 2015. DISCUSSION: This prospective multi-centre study aims to establish the maximum tolerated dose of pre-operative margin-intensified stereotactic radiotherapy in pancreatic cancer at high risk of positive resection margins with a view to subsequent definitive comparison with other neoadjuvant treatment options

    Ancient Origin of the New Developmental Superfamily DANGER

    Get PDF
    Developmental proteins play a pivotal role in the origin of animal complexity and diversity. We report here the identification of a highly divergent developmental protein superfamily (DANGER), which originated before the emergence of animals (∼850 million years ago) and experienced major expansion-contraction events during metazoan evolution. Sequence analysis demonstrates that DANGER proteins diverged via multiple mechanisms, including amino acid substitution, intron gain and/or loss, and recombination. Divergence for DANGER proteins is substantially greater than for the prototypic member of the superfamily (Mab-21 family) and other developmental protein families (e.g., WNT proteins). DANGER proteins are widely expressed and display species-dependent tissue expression patterns, with many members having roles in development. DANGER1A, which regulates the inositol trisphosphate receptor, promotes the differentiation and outgrowth of neuronal processes. Regulation of development may be a universal function of DANGER family members. This family provides a model system to investigate how rapid protein divergence contributes to morphological complexity

    Genetic Networks of Liver Metabolism Revealed by Integration of Metabolic and Transcriptional Profiling

    Get PDF
    Although numerous quantitative trait loci (QTL) influencing disease-related phenotypes have been detected through gene mapping and positional cloning, identification of the individual gene(s) and molecular pathways leading to those phenotypes is often elusive. One way to improve understanding of genetic architecture is to classify phenotypes in greater depth by including transcriptional and metabolic profiling. In the current study, we have generated and analyzed mRNA expression and metabolic profiles in liver samples obtained in an F2 intercross between the diabetes-resistant C57BL/6 leptinob/ob and the diabetes-susceptible BTBR leptinob/ob mouse strains. This cross, which segregates for genotype and physiological traits, was previously used to identify several diabetes-related QTL. Our current investigation includes microarray analysis of over 40,000 probe sets, plus quantitative mass spectrometry-based measurements of sixty-seven intermediary metabolites in three different classes (amino acids, organic acids, and acyl-carnitines). We show that liver metabolites map to distinct genetic regions, thereby indicating that tissue metabolites are heritable. We also demonstrate that genomic analysis can be integrated with liver mRNA expression and metabolite profiling data to construct causal networks for control of specific metabolic processes in liver. As a proof of principle of the practical significance of this integrative approach, we illustrate the construction of a specific causal network that links gene expression and metabolic changes in the context of glutamate metabolism, and demonstrate its validity by showing that genes in the network respond to changes in glutamine and glutamate availability. Thus, the methods described here have the potential to reveal regulatory networks that contribute to chronic, complex, and highly prevalent diseases and conditions such as obesity and diabetes

    Familial hypercholesterolaemia in children and adolescents from 48 countries: a cross-sectional study

    Get PDF
    Background: Approximately 450 000 children are born with familial hypercholesterolaemia worldwide every year, yet only 2·1% of adults with familial hypercholesterolaemia were diagnosed before age 18 years via current diagnostic approaches, which are derived from observations in adults. We aimed to characterise children and adolescents with heterozygous familial hypercholesterolaemia (HeFH) and understand current approaches to the identification and management of familial hypercholesterolaemia to inform future public health strategies. Methods: For this cross-sectional study, we assessed children and adolescents younger than 18 years with a clinical or genetic diagnosis of HeFH at the time of entry into the Familial Hypercholesterolaemia Studies Collaboration (FHSC) registry between Oct 1, 2015, and Jan 31, 2021. Data in the registry were collected from 55 regional or national registries in 48 countries. Diagnoses relying on self-reported history of familial hypercholesterolaemia and suspected secondary hypercholesterolaemia were excluded from the registry; people with untreated LDL cholesterol (LDL-C) of at least 13·0 mmol/L were excluded from this study. Data were assessed overall and by WHO region, World Bank country income status, age, diagnostic criteria, and index-case status. The main outcome of this study was to assess current identification and management of children and adolescents with familial hypercholesterolaemia. Findings: Of 63 093 individuals in the FHSC registry, 11 848 (18·8%) were children or adolescents younger than 18 years with HeFH and were included in this study; 5756 (50·2%) of 11 476 included individuals were female and 5720 (49·8%) were male. Sex data were missing for 372 (3·1%) of 11 848 individuals. Median age at registry entry was 9·6 years (IQR 5·8-13·2). 10 099 (89·9%) of 11 235 included individuals had a final genetically confirmed diagnosis of familial hypercholesterolaemia and 1136 (10·1%) had a clinical diagnosis. Genetically confirmed diagnosis data or clinical diagnosis data were missing for 613 (5·2%) of 11 848 individuals. Genetic diagnosis was more common in children and adolescents from high-income countries (9427 [92·4%] of 10 202) than in children and adolescents from non-high-income countries (199 [48·0%] of 415). 3414 (31·6%) of 10 804 children or adolescents were index cases. Familial-hypercholesterolaemia-related physical signs, cardiovascular risk factors, and cardiovascular disease were uncommon, but were more common in non-high-income countries. 7557 (72·4%) of 10 428 included children or adolescents were not taking lipid-lowering medication (LLM) and had a median LDL-C of 5·00 mmol/L (IQR 4·05-6·08). Compared with genetic diagnosis, the use of unadapted clinical criteria intended for use in adults and reliant on more extreme phenotypes could result in 50-75% of children and adolescents with familial hypercholesterolaemia not being identified. Interpretation: Clinical characteristics observed in adults with familial hypercholesterolaemia are uncommon in children and adolescents with familial hypercholesterolaemia, hence detection in this age group relies on measurement of LDL-C and genetic confirmation. Where genetic testing is unavailable, increased availability and use of LDL-C measurements in the first few years of life could help reduce the current gap between prevalence and detection, enabling increased use of combination LLM to reach recommended LDL-C targets early in life

    Measurement of the top quark forward-backward production asymmetry and the anomalous chromoelectric and chromomagnetic moments in pp collisions at √s = 13 TeV

    Get PDF
    Abstract The parton-level top quark (t) forward-backward asymmetry and the anomalous chromoelectric (d̂ t) and chromomagnetic (μ̂ t) moments have been measured using LHC pp collisions at a center-of-mass energy of 13 TeV, collected in the CMS detector in a data sample corresponding to an integrated luminosity of 35.9 fb−1. The linearized variable AFB(1) is used to approximate the asymmetry. Candidate t t ¯ events decaying to a muon or electron and jets in final states with low and high Lorentz boosts are selected and reconstructed using a fit of the kinematic distributions of the decay products to those expected for t t ¯ final states. The values found for the parameters are AFB(1)=0.048−0.087+0.095(stat)−0.029+0.020(syst),μ̂t=−0.024−0.009+0.013(stat)−0.011+0.016(syst), and a limit is placed on the magnitude of | d̂ t| < 0.03 at 95% confidence level. [Figure not available: see fulltext.

    Measurement of b jet shapes in proton-proton collisions at root s=5.02 TeV

    Get PDF
    We present the first study of charged-hadron production associated with jets originating from b quarks in proton-proton collisions at a center-of-mass energy of 5.02 TeV. The data sample used in this study was collected with the CMS detector at the CERN LHC and corresponds to an integrated luminosity of 27.4 pb(-1). To characterize the jet substructure, the differential jet shapes, defined as the normalized transverse momentum distribution of charged hadrons as a function of angular distance from the jet axis, are measured for b jets. In addition to the jet shapes, the per-jet yields of charged particles associated with b jets are also quantified, again as a function of the angular distance with respect to the jet axis. Extracted jet shape and particle yield distributions for b jets are compared with results for inclusive jets, as well as with the predictions from the pythia and herwig++ event generators.Peer reviewe
    corecore