147 research outputs found

    TGF-β-driven reduction of cytoglobin leads to oxidative DNA damage in stellate cells during non-alcoholic steatohepatitis

    Get PDF
    BACKGROUND: Cytoglobin (CYGB) is a respiratory protein that acts as a scavenger of reactive oxygen species. Although CYGB is expressed uniquely in hepatic stellate cells (HSCs) in the liver, the molecular role of CYGB in human HSC activation and human liver disease remains uncharacterised. The aim of this study was to reveal the mechanism by which TGF-β1/SMAD2 pathway regulates human CYGB promoter and the pathophysiological function of CYGB in human non-alcoholic steatohepatitis (NASH). METHODS: Immunohistochemical staining was performed using human NASH biopsy specimens. Molecular and biochemical analysis were performed by western blotting, quantitative PCR, and luciferase and immunoprecipitation assays. Hydroxyl radicals (•OH) and oxidative DNA damage were measured using an •OH-detectable probe and 8-hydroxy-2’-deoxyguanosine (8-OHdG) ELISA. RESULTS: In culture, TGF-β1-pretreated human hepatic stellate cells (HHSteCs) exhibited lowered CYGB levels together with increased NADPH oxidase 4 (NOX4) expression and were primed for H_{2}O_{2}-triggered OH production and 8-OHdG generation. Overexpression of human CYGB in HHSteCs cancelled out those effects of TGF-β1. Electron spin resonance demonstrated direct •OH-scavenging activity of recombinant human CYGB. Mechanistically, pSMAD2 reduced CYGB transcription by recruiting the M1 repressor isoform of SP3 to the human CYGB promoter at nucleotide positions +2–{+}^13 from the transcription start site. The same repression did not occur on the mouse Cygb promoter. TGF-β1/SMAD3 mediated αSMA and collagen expression. Consistent with those observations in cultured HHSteCs, CYGB expression was negligible, but 8-OHdG was abundant, in activated αSMA^{+}pSMAD2^{+}- and αSMA^{+}NOX4^{+}-positive hepatic stellate cells from human NASH patients with advanced fibrosis. CONCLUSIONS: Downregulation of CYGB by the TGF-β1/pSMAD2/SP3-M1 pathway brings about •OH-dependent oxidative DNA damage in activated hepatic stellate cells from human patients with NASH

    Hexa Histidine–Tagged Recombinant Human Cytoglobin Deactivates Hepatic Stellate Cells and Inhibits Liver Fibrosis by Scavenging Reactive Oxygen Species

    Get PDF
    BACKGROUND & AIMS: Anti-fibrotic therapy remains an unmet medical need in human chronic liver disease. We report the anti-fibrotic properties of cytoglobin (CYGB), a respiratory protein expressed in hepatic stellate cells (HSCs), the main cell type involved in liver fibrosis. APPROACH & RESULTS: Cygb-deficient mice which had bile duct ligation (BDL)-induced liver cholestasis or choline-deficient L-amino acid-defined (CDAA) diet-induced steatohepatitis significantly exacerbated liver damage, fibrosis and reactive oxygen species (ROS) formation. All these manifestations were attenuated in Cygb-overexpressing mice. We produced 6His-tagged recombinant human CYGB (His-CYGB), traced its bio-distribution and assessed its function in HSCs or in mice with advanced liver cirrhosis using thioacetamide (TAA) or 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC). In cultured HSCs, extracellular His-CYGB was endocytosed and accumulated in endosomes via clathrin-mediated pathway. His-CYGB significantly impeded ROS formation spontaneously or in the presence of ROS inducers in HSCs, thus leading to the attenuation of collagen type I alpha 1 production and alpha-smooth muscle actin expression. Replacement the iron centre of the heme group with cobalt nullified the effect of His-CYGB. In addition, His-CYGB induced interferon-β secretion by HSCs which partly contributed to its anti-fibrotic function. Momelotinib incompletely reversed the effect of His-CYGB. Intravenously injected His-CYGB markedly suppressed liver inflammation, fibrosis and oxidative cell damage in TAA- or DDC-administered mice without adverse effects. RNA-seq analysis revealed the downregulation of inflammation and fibrosis-related genes and the upregulation of antioxidant genes in both cell culture and liver tissues. The injected His-CYGB predominantly localised to HSCs but not to macrophages, suggesting specific targeting effects. His-CYGB exhibited no toxicity in humanised liver chimeric PXB mice. CONCLUSIONS: His-CYGB could have anti-fibrotic clinical applications for human chronic liver diseases

    Cancer cells produce liver metastasis via gap formation in sinusoidal endothelial cells through proinflammatory paracrine mechanisms

    Full text link
    Intracellular gap (iGap) formation in liver sinusoidal endothelial cells (LSECs) is caused by the destruction of fenestrae and appears under pathological conditions; nevertheless, their role in metastasis of cancer cells to the liver remained unexplored. We elucidated that hepatotoxin-damaged and fibrotic livers gave rise to LSECs-iGap formation, which was positively correlated with increased numbers of metastatic liver foci after intrasplenic injection of Hepa1-6 cells. Hepa1-6 cells induced interleukin-23-dependent tumor necrosis factor-α (TNF-α) secretion by LSECs and triggered LSECs-iGap formation, toward which their processes protruded to transmigrate into the liver parenchyma. TNF-α triggered depolymerization of F-actin and induced matrix metalloproteinase 9 (MMP9), intracellular adhesion molecule 1, and CXCL expression in LSECs. Blocking MMP9 activity by doxycycline or an MMP2/9 inhibitor eliminated LSECs-iGap formation and attenuated liver metastasis of Hepa1-6 cells. Overall, this study revealed that cancer cells induced LSEC-iGap formation via proinflammatory paracrine mechanisms and proposed MMP9 as a favorable target for blocking cancer cell metastasis to the liver

    Thyrotropin-releasing hormone (TRH) promotes wound re-epithelialisation in frog and human skin

    Get PDF
    There remains a critical need for new therapeutics that promote wound healing in patients suffering from chronic skin wounds. This is, in part, due to a shortage of simple, physiologically and clinically relevant test systems for investigating candidate agents. The skin of amphibians possesses a remarkable regenerative capacity, which remains insufficiently explored for clinical purposes. Combining comparative biology with a translational medicine approach, we report the development and application of a simple ex vivo frog (Xenopus tropicalis) skin organ culture system that permits exploration of the effects of amphibian skin-derived agents on re-epithelialisation in both frog and human skin. Using this amphibian model, we identify thyrotropin-releasing hormone (TRH) as a novel stimulant of epidermal regeneration. Moving to a complementary human ex vivo wounded skin assay, we demonstrate that the effects of TRH are conserved across the amphibian-mammalian divide: TRH stimulates wound closure and formation of neo-epidermis in organ-cultured human skin, accompanied by increased keratinocyte proliferation and wound healing-associated differentiation (cytokeratin 6 expression). Thus, TRH represents a novel, clinically relevant neuroendocrine wound repair promoter that deserves further exploration. These complementary frog and human skin ex vivo assays encourage a comparative biology approach in future wound healing research so as to facilitate the rapid identification and preclinical testing of novel, evolutionarily conserved, and clinically relevant wound healing promoters

    Fibroblast growth factor 2 (FGF2) regulates cytoglobin expression and activation of human hepatic stellate cells via JNK signaling

    Get PDF
    Cytoglobin (CYGB) belongs to the mammalian globin family and is exclusively expressed in hepatic stellate cells (HSCs) in the liver. In addition to its gas-binding ability, CYGB is relevant to hepatic inflammation, fibrosis, and cancer because of its antioxidative properties; however, the regulation of CYGB gene expression remains unknown. Here, we sought to identify factors that induce CYGB expression in HSCs and to clarify the molecular mechanism involved. We used the human HSC cell line HHSteC and primary human HSCs isolated from intact human liver tissues. In HHSteC cells, treatment with a culture supplement that included fibroblast growth factor 2 (FGF2) increased CYGB expression with concomitant and time-dependent α-smooth muscle actin (αSMA) downregulation. We found that FGF2 is a key factor in inducing the alteration in both CYGB and αSMA expression in HHSteCs and primary HSCs and that FGF2 triggered the rapid phosphorylation of both c-Jun N′terminal kinase (JNK) and c-JUN. Both the JNK inhibitor PS600125 and transfection of c-JUN-targeting siRNA abrogated FGF2-mediated CYGB induction, and, conversely, c-JUN overexpression induced CYGB and reduced αSMA expression. Chromatin immunoprecipitation analyses revealed that upon FGF2 stimulation, phospho-c-JUN bound to its consensus motif (5′-TGAC/GTCA), located −218 to −222 bases from the transcription initiation site in the CYGB promoter. Of note, in bile duct-ligated mice, FGF2 administration ameliorated liver fibrosis and significantly reduced HSC activation. In conclusion, FGF2 triggers CYGB gene expression and deactivation of myofibroblastic human HSCs, indicating that FGF2 has therapeutic potential for managing liver fibrosis

    Sry delivery to the adrenal medulla increases blood pressure and adrenal medullary tyrosine hydroxylase of normotensive WKY rats

    Get PDF
    BACKGROUND: Our laboratory has shown that a locus on the SHR Y chromosome increases blood pressure (BP) in the SHR rat and in WKY rats that had the SHR Y chromosome locus crossed into their genome (SHR/y rat). A potential candidate for this Y chromosome hypertension locus is Sry, a gene that encodes a transcription factor that is responsible for testes development and the Sry protein may affect other target genes. METHODS: The following study examined if exogenous Sry would elevate adrenal Th, adrenal catecholamines, plasma catecholamines and blood pressure. We delivered 10 μg of either the expression construct, Sry1/pcDNA 3.1, or control vector into the adrenal medulla of WKY rats by electroporation. Blood pressure was measured by the tail cuff technique and Th and catecholamines by HPLC with electrochemical detection. RESULTS: In the animals receiving Sry there were significant increases after 3 weeks in resting plasma NE (57%) and adrenal Th content (49%) compared to vector controls. BP was 30 mmHg higher in Sry injected animals (160 mmHg, p < .05) compared to vector controls (130 mmHg) after 2–3 weeks. Histological analysis showed that the electroporation procedure did not produce morphological damage. CONCLUSION: These results provide continued support that Sry is a candidate gene for hypertension. Also, these results are consistent with a role for Sry in increasing BP by directly or indirectly activating sympathetic nervous system activity

    Alternative platelet differentiation pathways initiated by nonhierarchically related hematopoietic stem cells

    Get PDF
    Rare multipotent stem cells replenish millions of blood cells per second through a time-consuming process, passing through multiple stages of increasingly lineage-restricted progenitors. Although insults to the blood-forming system highlight the need for more rapid blood replenishment from stem cells, established models of hematopoiesis implicate only one mandatory differentiation pathway for each blood cell lineage. Here, we establish a nonhierarchical relationship between distinct stem cells that replenish all blood cell lineages and stem cells that replenish almost exclusively platelets, a lineage essential for hemostasis and with important roles in both the innate and adaptive immune systems. These distinct stem cells use cellularly, molecularly and functionally separate pathways for the replenishment of molecularly distinct megakaryocyte-restricted progenitors: a slower steady-state multipotent pathway and a fast-track emergency-activated platelet-restricted pathway. These findings provide a framework for enhancing platelet replenishment in settings in which slow recovery of platelets remains a major clinical challenge.Jacobsen and colleagues elucidate the nonhierarchical relationship between two types of stem cells: Vwf - hematopoietic stem cells that stably replenish all blood cell lineages without a platelet bias, and Vwf + stem cells that replenish almost exclusively platelets, and demonstrate that the two types utilize cellularly and molecularly distinct progenitor trajectories for replenishment of platelets

    TGF β1 and PDGF AA override Collagen type I inhibition of proliferation in human liver connective tissue cells

    Get PDF
    BACKGROUND: A marked expansion of the connective tissue population and an abnormal deposition of extracellular matrix proteins are hallmarks of chronic and acute injuries to liver tissue. Liver connective tissue cells, also called stellate cells, derived from fibrotic liver have been thoroughly characterized and correspond phenotypically to myofibroblasts. They are thought to derive from fat-storing Ito cells in the perisinusoidal space and acquire a contractile phenotype when activated by tissue injury. In the last few years it has become evident that several peptide growth factors such as PDGF AA and TGF-β are involved in the development of fibrosis by modulating myofibroblast proliferation and collagen secretion. The fact that during the development of chronic fibrosis there is concomitant deposition of collagen, a known inhibitory factor, and sustained cell proliferation, raises the possibility that stellate cells from chronic liver fibrosis patients fail to respond to normal physiologic controls. METHODS: In this study we address whether cells from fibrotic liver patients respond to normal controls of proliferation. We compared cell proliferation of primary human liver connective tissue cells (LCTC) from patients with liver fibrosis and skin fibroblasts (SF) in the presence of collagens type I and IV; TGF-β, PDGF AA and combinations of collagen type I and TGF-β or PDGF AA. RESULTS: Our results indicate that despite displaying normal contact and collagen-induced inhibition of proliferation LCTC respond more vigorously to lower concentrations of PDGF AA. In addition, we show that collagen type I synergizes with growth factors to promote mitogenesis of LCTC but not SF. CONCLUSIONS: The synergistic interaction of growth factors and extracellular matrix proteins may underlie the development of chronic liver fibrosis

    Thyroid function, autoimmunity and nodules in hematological malignancies

    Get PDF
    Objective Hematological malignancies encompass a large spectrum of disease entities whose treatment by chemo/radiotherapy could lead to thyroid complications. To the best of our knowledge, no study has simultaneously addressed thyroid function, autoimmunity and nodularity. Therefore, we decided to conduct one.Materials and methods We evaluated 82 Caucasian patients (36 women and 46 men), who were treated at our Oncology division for hematological malignancies (multiple myeloma, chronic myeloid leukemia, chronic lymphatic leukemia, non-Hodgkin lymphoma and polycythemia vera) and compared them with a control group of 104 patients. Patients who had received or were receiving external head/neck radiotherapy were excluded. All oncological patients and control individuals underwent thyroid ultrasonography and thyroid function and autoimmunity tests.Results A lower prevalence of enlarged thyroid and nodules were found in patients with respect to controls. The rate of thyroid nodules was the highest in multiple myeloma and polycythemia vera, and the lowest in chronic lymphatic leukemia. Non-Hodgkin lymphoma patients had the smallest thyroid nodules while men with multiple myeloma the biggest ones. No patient had hypothyroidism, while 5.6% of patients had subclinical hyperthyroidism. In contrast, within the control group the rates of hypothyroidism and hyperthyroidism, overt and subclinical, were 3.8%, 20.2%, 0% and 0% respectively. Moreover, the overall rate of thyroid autoantibody positiveness in patients was significantly lower than controls.Conclusion In our experience, we found a significantly lower prevalence of thyroid abnormalities in hematologic patients who underwent chemotherapy, but not radiotherapy, with respect to controls. Arch Endocrinol Metab. 2015;59(3):236-4

    Dental cell type atlas reveals stem and differentiated cell types in mouse and human teeth

    Get PDF
    Understanding cell types and mechanisms of dental growth is essential for reconstruction and engineering of teeth. Therefore, we investigated cellular composition of growing and non-growing mouse and human teeth. As a result, we report an unappreciated cellular complexity of the continuously-growing mouse incisor, which suggests a coherent model of cell dynamics enabling unarrested growth. This model relies on spatially-restricted stem, progenitor and differentiated populations in the epithelial and mesenchymal compartments underlying the coordinated expansion of two major branches of pulpal cells and diverse epithelial subtypes. Further comparisons of human and mouse teeth yield both parallelisms and differences in tissue heterogeneity and highlight the specifics behind growing and non-growing modes. Despite being similar at a coarse level, mouse and human teeth reveal molecular differences and species-specific cell subtypes suggesting possible evolutionary divergence. Overall, here we provide an atlas of human and mouse teeth with a focus on growth and differentiation. Unlike human teeth, mouse incisors grow throughout life, based on stem and progenitor cell activity. Here the authors generate single cell RNA-seq comparative maps of continuously-growing mouse incisor, non-growing mouse molar and human teeth, combined with lineage tracing to reveal dental cell complexity.Peer reviewe
    corecore