19 research outputs found

    Spectator-model operators in point-form relativistic quantum mechanics

    Full text link
    We address the construction of transition operators for electromagnetic, weak, and hadronic reactions of relativistic few-quark systems along the spectator model. While the problem is of relevance for all forms of relativistic quantum mechanics, we specifically adhere to the point form, since it preserves the spectator character of the corresponding transition operators in any reference frame. The conditions imposed on the construction of point-form spectator-model operators are discussed and their implications are exemplified for mesonic decays of baryon resonances within a relativistic constituent quark model.Comment: 10 pages, 4 figures, updated version accepted for publication in Europ. Phys. J.

    Generalized vector form factors of the pion in a chiral quark model

    Full text link
    Generalized vector form factors of the pion, related to the moments of the generalized parton distribution functions, are evaluated in the Nambu--Jona-Lasinio model with the Pauli-Villars regularization. The lowest moments (the electromagnetic and the gravitational form factors) are compared to recent lattice data, with fair agreement. Predictions for higher-order moments are also made. Relevant features of the generalized form factors in the chiral quark models are highlighted and the role of the QCD evolution for the higher-order GFFs is stressed.Comment: Dedicated to the memory of Manoj K. Banerjee, to appear in a special issue of the Indian Journal of Physics, 6 pages, 4 figure

    Baryon resonances and strong decays

    Full text link
    Constituent quark models provide a reasonable description of the baryon mass spectra. However, even in the light- and strange-flavor sectors several intriguing shortcomings remain. Especially with regard to strong decays of baryon resonances no consistent picture has so far emerged, and the existing experimental data cannot be explained in a satisfactory manner. Recently first covariant calculations with modern constituent quark models have become available for all pi, eta, and K decay modes of the low-lying light and strange baryons. They generally produced a remarkable underestimation of the experimental data for partial decay widths. We summarize the main results and discuss their impact on the classification of baryon resonances into flavor multiplets. These findings are of particular relevance for future efforts in the experimental investigation of baryon resonances.Comment: Talk presented at NSTAR 2007, 5 - 8 September 2007, Bonn, German

    Study of relativistic bound states for scalar theories in Bethe-Salpeter and Dyson-Schwinger formalism

    Full text link
    The Bethe-Salpeter equation for Wick-Cutkosky like models is solved in dressed ladder approximation. The bare vertex truncation of the Dyson-Schwinger equations for propagators is combined with the dressed ladder Bethe-Salpeter equation for the scalar S-wave bound state amplitudes. With the help of spectral representation the results are obtained directly in Minkowski space. We give a new analytic formula for the resulting equation simplifying the numerical treatment. The bare ladder approximation of Bethe-Salpeter equation is compared with the one with dressed ladder. The elastic electromagnetic form factors is calculated within the relativistic impulse approximation.Comment: 30 pages, 10 figures, accepted for publication in Phys. Rev.

    Strangeness production in proton-proton and proton-nucleus collisions

    Full text link
    In these lectures we discuss the investigation of the strange meson production in proton-proton (pppp) and in proton-nucleus (pApA) reactions within an effective Lagrangian model. The kaon production proceeds mainly via the excitations of N∗N^*(1650), N∗N^*(1710), and N∗N^*(1720) resonant intermediate nucleonic states, in the collision of two initial state nucleons. Therefore, the strangeness production is expected to provide information about the resonances lying at higher excitation energies. For beam energies very close to the kaon production threshold the hyperon-proton final state interaction effects are quite important. Thus, these studies provide a check on the models of hyperon-nucleon interactions. The in-medium production of kaons show strong sensitivity to the self energies of the intermediate mesons.Comment: 16 pages, 9 figures, Talk presented in the workshop on Hadron Physics, Puri, India, March 7-17,200

    Pion wave function from lattice QCD vs. chiral quark models

    Get PDF
    We analyze the equal-time Bethe-Salpeter quark wave function of the pion obtained from a quenched lattice QCD calculation with delocalized quark interpolators. We find that the result agrees remarkably well with the predictions of the Nambu--Jona-Lasinio model in all channels. We choose the quenched lattice QCD, since it is closer to the large-Nc limit of the Nambu--Jona-Lasinio model. We also show how transversity information, relevant for the light-cone physics, can be obtained from our equal-time rest-frame lattice calculations.Comment: 7 pages, 2 figure

    Sigma photoproduction in the resonance region

    Get PDF
    A study of p(gamma,K)Sigma processes in an isobar model at tree level is reported. By comparing model calculations to the published SAPHIR data, we explore the possible role of different isospin I=1/2 (N*) and I=3/2 (Delta*) resonances in the reaction dynamics. In our analysis, the inclusion of the ``missing'' D_{13}(1895) resonance does only slightly improve the global description of the Sigma photoproduction data. More convincing signals for the presence of such a ``missing'' resonance emerged in the analysis of the isospin related p(gamma,K+)Lambda reaction. Various implementations of the nonresonant part of the Sigma photoproduction amplitude are presented. The sensitivity of the computed observables and extracted resonance parameters to the uncertainties inherent to the treatment of the nonresonant (background) diagrams are discussed.Comment: subsection and table added, to appear in Phys. Rev.

    Heisenberg's Uncertainty Relation and Bell Inequalities in High Energy Physics

    Full text link
    An effective formalism is developed to handle decaying two-state systems. Herewith, observables of such systems can be described by a single operator in the Heisenberg picture. This allows for using the usual framework in quantum information theory and, hence, to enlighten the quantum feature of such systems compared to non-decaying systems. We apply it to systems in high energy physics, i.e. to oscillating meson-antimeson systems. In particular, we discuss the entropic Heisenberg uncertainty relation for observables measured at different times at accelerator facilities including the effect of CP violation, i.e. the imbalance of matter and antimatter. An operator-form of Bell inequalities for systems in high energy physics is presented, i.e. a Bell-witness operator, which allows for simple analysis of unstable systems.Comment: 17 page

    Electroweak pinch technique to all orders

    Full text link
    The generalization of the pinch technique to all orders in the electroweak sector of the Standard Model within the class of the renormalizable 't Hooft gauges, is presented. In particular, both the all-order PT gauge-boson-- and scalar--fermions vertices, as well as the diagonal and mixed gauge-boson and scalar self-energies are explicitly constructed. This is achieved through the generalization to the Standard Model of the procedure recently applied to the QCD case, which consist of two steps: (i) the identification of special Green's functions, which serve as a common kernel to all self-energy and vertex diagrams, and (ii) the study of the (on-shell) Slavnov-Taylor identities they satisfy. It is then shown that the ghost, scalar and scalar--gauge-boson Green's functions appearing in these identities capture precisely the result of the pinching action at arbitrary order. It turns out that the aforementioned Green's functions play a crucial role, their net effect being the non-trivial modification of the ghost, scalar and scalar--gauge-boson diagrams of the gauge-boson-- or scalar--fermions vertex we have started from, in such a way as to dynamically generate the characteristic ghost and scalar sector of the background field method. The pinch technique gauge-boson and scalar self-energies are also explicitly constructed by resorting to the method of the background-quantum identities.Comment: 48 pages, 8 figures; v2: typos correcte

    Quark-model study of few-baryon systems

    Get PDF
    We review the application of non-relativistic constituent quark models to study one, two and three non-strange baryon systems. We present results for the baryon spectra, potentials and observables of the NN, NΔ\Delta, ΔΔ\Delta\Delta and NN∗(1440)^*(1440) systems, and also for the binding energies of three non-strange baryon systems. We make emphasis on observable effects related to quark antisymmetry and its interplay with quark dynamics.Comment: 82 pages, 36 figures, 18 tables. Accepted for publication in Reports on Progress in Physic
    corecore