659 research outputs found
Monitoring synaptic transmission in primary neuronal cultures using local extracellular stimulation
Various techniques have been applied for the functional analysis of synaptic transmission in Cultured neurons. Here, we describe a method of studying synaptic transmission in neurons cultured at high-density from different brain regions such as the cortex, striatum and spinal cord. We use postsynaptic whole-cell recordings to monitor synaptic Currents triggered by presynaptic action potentials that are induced by brief stimulations with a nearby extracellular bipolar electrode. Pharmacologically isolated excitatory or inhibitory postsynaptic currents can be reliably induced, with amplitudes, synaptic charge transfers, and short-term plasticity properties that are reproducible from culture to culture. We show that the size and kinetics of pharmacologically isolated inhibitory postsynaptic Currents triggered by single action potentials or stimulus trains depend on the Ca2+ concentration, temperature and stimulation frequency. This method can be applied to study synaptic transmission in wildtype neurons infected with lentiviruses encoding various components of presynaptic release machinery, or in neurons from genetically modified mice, for example neurons carrying floxed genes in which gene expression can be acutely ablated by expression of Cre recombinase. The preparation described in this paper should be useful for analysis of synaptic transmission in inter-neuronal synapses formed by different types of neurons. (c) 2006 Elsevier B.V. All rights reserved
Loss of AP-3 function affects spontaneous and evoked release at hippocampal mossy fiber synapses
Synaptic vesicle (SV) exocytosis mediating neurotransmitter release occurs
spontaneously at low intraterminal calcium concentrations and is stimulated by
a rise in intracellular calcium. Exocytosis is compensated for by the
reformation of vesicles at plasma membrane and endosomes. Although the adaptor
complex AP-3 was proposed to be involved in the formation of SVs from
endosomes, whether its function has an indirect effect on exocytosis remains
unknown. Using mocha mice, which are deficient in functional AP-3, we identify
an AP-3-dependent tetanus neurotoxin-resistant asynchronous release that can be
evoked at hippocampal mossy fiber (MF) synapses. Presynaptic targeting of the
tetanus neurotoxin-resistant vesicle soluble N-ethylmaleimide-sensitive factor
attachment protein receptor (SNARE) tetanus neurotoxin-insensitive
vesicle-associated membrane protein (TI-VAMP) is lost in mocha hippocampal MF
terminals, whereas the localization of synaptobrevin 2 is unaffected. In
addition, quantal release in mocha cultures is more frequent and more sensitive
to sucrose. We conclude that lack of AP-3 results in more constitutive
secretion and loss of an asynchronous evoked release component, suggesting an
important function of AP-3 in regulating SV exocytosis at MF terminals
SUMOylation of Syntaxin1A regulates presynaptic endocytosis
Neurotransmitter release from the presynaptic terminal is under very precise spatial and temporal control. Following neurotransmitter release, synaptic vesicles are recycled by endocytosis and refilled with neurotransmitter. During the exocytosis event leading to release, SNARE proteins provide most of the mechanical force for membrane fusion. Here, we show one of these proteins, Syntaxin1A, is SUMOylated near its C-terminal transmembrane domain in an activity-dependent manner. Preventing SUMOylation of Syntaxin1A reduces its interaction with other SNARE proteins and disrupts the balance of synaptic vesicle endo/exocytosis, resulting in an increase in endocytosis. These results indicate that SUMOylation regulates the emerging role of Syntaxin1A in vesicle endocytosis, which in turn, modulates neurotransmitter release and synaptic function
Phosphorylation of Syntaxin‐1a by casein kinase 2α (CK2α) regulates presynaptic vesicle exocytosis from the reserve pool
The t-soluble NSF-attachment protein receptor protein Syntaxin-1a (Stx-1a) is abundantly expressed at pre-synaptic terminals where it plays a critical role in the exocytosis of neurotransmitter-containing synaptic vesicles. Stx-1a is phosphorylated by Casein kinase 2α (CK2α) at Ser14, which has been proposed to regulate the interaction of Stx-1a and Munc-18 to control of synaptic vesicle priming. However, the role of CK2α in synaptic vesicle dynamics remains unclear. Here, we show that CK2α over-expression reduces evoked synaptic vesicle release. Furthermore, shRNA-mediated knockdown of CK2α in primary hippocampal neurons strongly enhanced vesicle exocytosis from the reserve pool, with no effect on the readily releasable pool of primed vesicles. In neurons in which endogenous Stx-1a was knocked down and replaced with a CK2α phosphorylation-deficient mutant, Stx-1a(D17A), vesicle exocytosis was also increased. These results reveal a previously unsuspected role of CK2α phosphorylation in specifically regulating the reserve synaptic vesicle pool, without changing the kinetics of release from the readily releasable pool
Ultrastructural and functional fate of recycled vesicles in hippocampal synapses
Efficient recycling of synaptic vesicles is thought to be critical for sustained information transfer at central terminals. However, the specific contribution that retrieved vesicles make to future transmission events remains unclear. Here we exploit fluorescence and time-stamped electron microscopy to track the functional and positional fate of vesicles endocytosed after readily releasable pool (RRP) stimulation in rat hippocampal synapses. We show that most vesicles are recovered near the active zone but subsequently take up random positions in the cluster, without preferential bias for future use. These vesicles non-selectively queue, advancing towards the release site with further stimulation in an actin-dependent manner. Nonetheless, the small subset of vesicles retrieved recently in the stimulus train persist nearer the active zone and exhibit more privileged use in the next RRP. Our findings reveal heterogeneity in vesicle fate based on nanoscale position and timing rules, providing new insights into the origins of future pool constitution
Monoubiquitination of syntaxin 3 leads to retrieval from the basolateral plasma membrane and facilitates cargo recruitment to exosomes
Syntaxin 3 (Stx3), a SNARE protein located and functioning at the apical plasma membrane of epithelial cells, is required for epithelial polarity. A fraction of Stx3 is localized to late endosomes/lysosomes, although how it traffics there and its function in these organelles is unknown. Here we report that Stx3 undergoes monoubiquitination in a conserved polybasic domain. Stx3 present at the basolateral—but not the apical—plasma membrane is rapidly endocytosed, targeted to endosomes, internalized into intraluminal vesicles (ILVs), and excreted in exosomes. A nonubiquitinatable mutant of Stx3 (Stx3-5R) fails to enter this pathway and leads to the inability of the apical exosomal cargo protein GPRC5B to enter the ILV/exosomal pathway. This suggests that ubiquitination of Stx3 leads to removal from the basolateral membrane to achieve apical polarity, that Stx3 plays a role in the recruitment of cargo to exosomes, and that the Stx3-5R mutant acts as a dominant-negative inhibitor. Human cytomegalovirus (HCMV) acquires its membrane in an intracellular compartment and we show that Stx3-5R strongly reduces the number of excreted infectious viral particles. Altogether these results suggest that Stx3 functions in the transport of specific proteins to apical exosomes and that HCMV exploits this pathway for virion excretion
A scoping review of geographic information systems in maternal health.
BACKGROUND: Geographic information systems (GIS) are increasingly recognized tools in maternal health. OBJECTIVES: To evaluate the use of GIS in maternal health and to identify knowledge gaps and opportunities. SEARCH STRATEGY: Keywords broadly related to maternal health and GIS were used to search for academic articles and gray literature. SELECTION CRITERIA: Reviewed articles focused on maternal health, with GIS used as part of the methods. DATA COLLECTION AND ANALYSIS: Peer reviewed articles (n=40) and gray literature sources (n=30) were reviewed. MAIN RESULTS: Two main themes emerged: modeling access to maternal services and identifying risks associated with maternal outcomes. Knowledge gaps included a need to rethink spatial access to maternal care in low- and middle-income settings, and a need for more explicit use of GIS to account for the geographical variation in the effect of risk factors on adverse maternal outcomes. Limited evidence existed to suggest that use of GIS had influenced maternal health policy. Instead, application of GIS to maternal health was largely influenced by policy priorities in global maternal health. CONCLUSIONS: Investigation of the role of GIS in contributing to future policy directions is warranted, particularly for elucidating determinants of global maternal health
Synapse Pathology in Psychiatric and Neurologic Disease
Inhibitory and excitatory synapses play a fundamental role in information processing in the brain. Excitatory synapses usually are situated on dendritic spines, small membrane protrusions that harbor glutamate receptors and postsynaptic density components and help transmit electrical signals. In recent years, it has become evident that spine morphology is intimately linked to synapse function—smaller spines have smaller synapses and support reduced synaptic transmission. The relationship between synaptic signaling, spine shape, and brain function is never more apparent than when the brain becomes dysfunctional. Many psychiatric and neurologic disorders, ranging from mental retardation and autism to Alzheimer’s disease and addiction, are accompanied by alterations in spine morphology and synapse number. In this review, we highlight the structure and molecular organization of synapses and discuss functional effects of synapse pathology in brain disease
- …