55 research outputs found
Investigation of A1g phonons in YBa2Cu3O7 by means of LAPW atomic-force calculations
We report first-principles frozen-phonon calculations for the determination
of the force-free geometry and the dynamical matrix of the five Raman-active
A1g modes in YBa2Cu3O7. To establish the shape of the phonon potentials atomic
forces are calculated within the LAPW method. Two different schemes - the local
density approximation (LDA) and a generalized gradient approximation (GGA) -
are employed for the treatment of electronic exchange and correlation effects.
We find that in the case of LDA the resulting phonon frequencies show a
deviation from experimental values of approximately -10%. Invoking GGA the
frequency values are significantly improved and also the eigenvectors are in
very good agreement with experimental findings.Comment: 15 page
Infrared optical properties of Pr2CuO4
The ab-plane reflectance of a Pr2CuO4 single crystal has been measured over a
wide frequency range at a variety of temperatures, and the optical properties
determined from a Kramers-Kronig analysis. Above ~ 250 K, the low frequency
conductivity increases quickly with temperature; the resistivity follows the
form e^(E_a/k_BT), where E_a ~ 0.17 eV is much less than the inferred optical
gap of ~ 1.2 eV. Transport measurements show that at low temperature the
resistivity deviates from activated behavior and follows the form
e^[(T_0/T)^1/4], indicating that the dc transport in this material is due to
variable-range hopping between localized states in the gap. The four
infrared-active Eu modes dominate the infrared optical properties. Below ~ 200
K, a striking new feature appears near the low-frequency Eu mode, and there is
additional new fine structure at high frequency. A normal coordinate analysis
has been performed and the detailed nature of the zone-center vibrations
determined. Only the low-frequency Eu mode has a significant Pr-Cu interaction.
Several possible mechanisms related to the antiferromagnetism in this material
are proposed to explain the sudden appearance of this and other new spectral
features at low temperature.Comment: 11 pages, 7 embedded EPS figures, REVTeX
Distinct muscle imaging patterns in myofibrillar myopathies
Objective: To compare muscle imaging findings in different subtypes of myofibrillar myopathies (MFM) in order to identify characteristic patterns of muscle alterations that may be helpful to separate these genetic heterogeneous muscular disorders. Methods: Muscle imaging and clinical findings of 46 patients with MFM were evaluated (19 desminopathy, 12 myotilinopathy, 11 filaminopathy, 1 alpha B-crystallinopathy, and 3 ZASPopathy). The data were collected retrospectively in 43 patients and prospectively in 3 patients. Results: In patients with desminopathy, the semitendinosus was at least equally affected as the biceps femoris, and the peroneal muscles were never less involved than the tibialis anterior (sensitivity of these imaging criteria to detect desminopathy in our cohort 100%, specificity 95%). In most of the patients with myotilinopathy, the adductor magnus showed more alterations than the gracilis muscle, and the sartorius was at least equally affected as the semitendinosus (sensitivity 90%, specificity 93%). In filaminopathy, the biceps femoris and semitendinosus were at least equally affected as the sartorius muscle, and the medial gastrocnemius was more affected than the lateral gastrocnemius. The semimembranosus mostly showed more alterations than the adductor magnus (sensitivity 88%, specificity 96%). Early adult onset and cardiac involvement was most often associated with desminopathy. In patients with filaminopathy, muscle weakness typically beginning in the 5th decade of life was mostly pronounced proximally, while late adult onset (> 50 years) with distal weakness was more often present in myotilinopathy. Conclusions: Muscle imaging in combination with clinical data may be helpful for separation of distinct myofibrillar myopathy subtypes and in scheduling of genetic analysis
Unusual multisystemic involvement and a novel BAG3 mutation revealed by NGS screening in a large cohort of myofibrillar myopathies
Background: Myofibrillar myopathies (MFM) are a group of phenotypically and genetically heterogeneous neuromuscular disorders, which are characterized by protein aggregations in muscle fibres and can be associated with multisystemic involvement. Methods: We screened a large cohort of 38 index patients with MFM for mutations in the nine thus far known causative genes using Sanger and next generation sequencing (NGS). We studied the clinical and histopathological characteristics in 38 index patients and five additional relatives (n = 43) and particularly focused on the associated multisystemic symptoms. Results: We identified 14 heterozygous mutations (diagnostic yield of 37%), among them the novel p.Pro209Gln mutation in the BAG3 gene, which was associated with onset in adulthood, a mild phenotype and an axonal sensorimotor polyneuropathy, in the absence of giant axons at the nerve biopsy. We revealed several novel clinical phenotypes and unusual multisystemic presentations with previously described mutations: hearing impairment with a FLNC mutation, dysphonia with a mutation in DES and the first patient with a FLNC mutation presenting respiratory insufficiency as the initial symptom. Moreover, we described for the first time respiratory insufficiency occurring in a patient with the p.Gly154Ser mutation in CRYAB. Interestingly, we detected a polyneuropathy in 28% of the MFM patients, including a BAG3 and a MYOT case, and hearing impairment in 13%, including one patient with a FLNC mutation and two with mutations in the DES gene. In four index patients with a mutation in one of the MFM genes, typical histological findings were only identified at the ultrastructural level (29%). Conclusions: We conclude that extraskeletal symptoms frequently occur in MFM, particularly cardiac and respiratory involvement, polyneuropathy and/or deafness. BAG3 mutations should be considered even in cases with a mild phenotype or an adult onset. We identified a genetic defect in one of the known genes in less than half of the MFM patients, indicating that more causative genes are still to be found. Next generation sequencing techniques should be helpful in achieving this aim
Accelerated CMR using zonal, parallel and prior knowledge driven imaging methods
Accelerated imaging is highly relevant for many CMR applications as competing constraints with respect to spatiotemporal resolution and tolerable scan times are frequently posed. Three approaches, all involving data undersampling to increase scan efficiencies, are discussed in this review. Zonal imaging can be considered a niche but nevertheless has found application in coronary imaging and CMR flow measurements. Current work on parallel-transmit systems is expected to revive the interest in zonal imaging techniques. The second and main approach to speeding up CMR sequences has been parallel imaging. A wide range of CMR applications has benefited from parallel imaging with reduction factors of two to three routinely applied for functional assessment, perfusion, viability and coronary imaging. Large coil arrays, as are becoming increasingly available, are expected to support reduction factors greater than three to four in particular in combination with 3D imaging protocols. Despite these prospects, theoretical work has indicated fundamental limits of coil encoding at clinically available magnetic field strengths. In that respect, alternative approaches exploiting prior knowledge about the object being imaged as such or jointly with parallel imaging have attracted considerable attention. Five to eight-fold scan accelerations in cine and dynamic CMR applications have been reported and image quality has been found to be favorable relative to using parallel imaging alone
Examining coherence of accuracy tests of total station surveying and geodetic instruments based on comparison of results of complete test procedures according to ISO 17123
Total Station Instruments can be qualified as the equipment whose accuracy parameters can be tested with measuring and calculation procedures, pursuant to part 3, 4 and 5 of ISO 17123. The present paper aims to study coherence of accuracy results obtained, on the one hand, by combining parts 3, 4, and part 5, on the other hand. The tests were carried out based on complete test procedures with test bases located on the premises of AGH University and city meadow in Krakow. The following instruments were tested: Trimble S6, Leica TCRA 1101 and Topcon GPT 7500
- …