550 research outputs found

    Analysis of satellite-derived Arctic tropospheric BrO columns in conjunction with aircraft measurements during ARCTAS and ARCPAC

    Get PDF
    We derive tropospheric column BrO during the ARCTAS and ARCPAC field campaigns in spring 2008 using retrievals of total column BrO from the satellite UV nadir sensors OMI and GOME-2 using a radiative transfer model and stratospheric column BrO from a photochemical simulation. We conduct a comprehensive comparison of satellite-derived tropospheric BrO column to aircraft in-situ observations of BrO and related species. The aircraft profiles reveal that tropospheric BrO, when present during April 2008, was distributed over a broad range of altitudes rather than being confined to the planetary boundary layer (PBL). Perturbations to the total column resulting from tropospheric BrO are the same magnitude as perturbations due to longitudinal variations in the stratospheric component, so proper accounting of the stratospheric signal is essential for accurate determination of satellite-derived tropospheric BrO. We find reasonably good agreement between satellite-derived tropospheric BrO and columns found using aircraft in-situ BrO profiles, particularly when satellite radiances were obtained over bright surfaces (albedo \u3e0.7), for solar zenith angl

    Evaluating Effects of H2O and overhead O3 on Global Mean Tropospheric OH Concentration

    Get PDF
    The oxidizing capacity of the troposphere is controlled, to a large extent, by the abundance of hydroxyl radical (OH). The global mean concentration of OH, [OH]GLOBAL, inferred from measurements of methyl chloroform, has remained relatively constant during the past several decades, despite rising levels of CH4 that should have led to a steady decline. Here we examine other factors that may have affected [OH]GLOBAL, such as the overhead burden of stratospheric O3 and tropospheric H2O, using global OH fields from the GEOS-CHEM Chemistry-Climate Model. Our analysis suggests these factors may have contributed a positive trend to [OH]GLOBAL large enough to counter the decrease due to CH4

    VerdictDB: Universalizing Approximate Query Processing

    Full text link
    Despite 25 years of research in academia, approximate query processing (AQP) has had little industrial adoption. One of the major causes of this slow adoption is the reluctance of traditional vendors to make radical changes to their legacy codebases, and the preoccupation of newer vendors (e.g., SQL-on-Hadoop products) with implementing standard features. Additionally, the few AQP engines that are available are each tied to a specific platform and require users to completely abandon their existing databases---an unrealistic expectation given the infancy of the AQP technology. Therefore, we argue that a universal solution is needed: a database-agnostic approximation engine that will widen the reach of this emerging technology across various platforms. Our proposal, called VerdictDB, uses a middleware architecture that requires no changes to the backend database, and thus, can work with all off-the-shelf engines. Operating at the driver-level, VerdictDB intercepts analytical queries issued to the database and rewrites them into another query that, if executed by any standard relational engine, will yield sufficient information for computing an approximate answer. VerdictDB uses the returned result set to compute an approximate answer and error estimates, which are then passed on to the user or application. However, lack of access to the query execution layer introduces significant challenges in terms of generality, correctness, and efficiency. This paper shows how VerdictDB overcomes these challenges and delivers up to 171×\times speedup (18.45×\times on average) for a variety of existing engines, such as Impala, Spark SQL, and Amazon Redshift, while incurring less than 2.6% relative error. VerdictDB is open-sourced under Apache License.Comment: Extended technical report of the paper that appeared in Proceedings of the 2018 International Conference on Management of Data, pp. 1461-1476. ACM, 201

    Characterization of soluble bromide measurements and a case study of BrO observations during ARCTAS

    Get PDF
    A focus of the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) mission was examination of bromine photochemistry in the spring time high latitude troposphere based on aircraft and satellite measurements of bromine oxide (BrO) and related species. The NASA DC-8 aircraft utilized a chemical ionization mass spectrometer (CIMS) to measure BrO and a mist chamber (MC) to measure soluble bromide. We have determined that the MC detection efficiency to molecular bromine (Br2), hypobromous acid (HOBr), bromine oxide (BrO), and hydrogen bromide (HBr) as soluble bromide (Br−) was 0.9±0.1, 1.06+0.30/−0.35, 0.4±0.1, and 0.95±0.1, respectively. These efficiency factors were used to estimate soluble bromide levels along the DC-8 flight track of 17 April 2008 from photochemical calculations constrained to in situ BrO measured by CIMS. During this flight, the highest levels of soluble bromide and BrO were observed and atmospheric conditions were ideal for the space-borne observation of BrO. The good agreement (R2 = 0.76; slope = 0.95; intercept = −3.4 pmol mol−1) between modeled and observed soluble bromide, when BrO was above detection limit (\u3e2 pmol mol−1) under unpolluted conditions (NOmol−1), indicates that the CIMS BrO measurements were consistent with the MC soluble bromide and that a well characterized MC can be used to derive mixing ratios of some reactive bromine compounds. Tropospheric BrO vertical column densities (BrOVCD) derived from CIMS BrO observations compare well with BrOTROPVCD from OMI on 17 April 2008

    Quantifying The Causes of Differences in Tropospheric OH within Global Models

    Get PDF
    The hydroxyl radical (OH) is the primary daytime oxidant in the troposphere and provides the main loss mechanism for many pollutants and greenhouse gases, including methane (CH4). Global mean tropospheric OH differs by as much as 80% among various global models, for reasons that are not well understood. We use neural networks (NNs), trained using archived output from eight chemical transport models (CTMs) that participated in the POLARCAT Model Intercomparison Project (POLMIP), to quantify the factors responsible for differences in tropospheric OH and resulting CH4 lifetime (τCH4) between these models. Annual average τCH4, for loss by OH only, ranges from 8.0–11.6 years for the eight POLMIP CTMs. The factors driving these differences were quantified by inputting 3-D chemical fields from one CTM into the trained NN of another CTM. Across all CTMs, the largest mean differences in τCH4 (ΔτCH4) result from variations in chemical mechanisms (ΔτCH4 = 0.46 years), the photolysis frequency (J) of O3→O(1D) (0.31 years), local O3 (0.30 years), and CO (0.23 years). The ΔτCH4 due to CTM differences in NOx (NO + NO2) is relatively low (0.17 years), though large regional variation in OH between the CTMs is attributed to NOx. Differences in isoprene and J(NO2) have negligible overall effect on globally averaged tropospheric OH, though the extent of OH variations due to each factor depends on the model being examined. This study demonstrates that NNs can serve as a useful tool for quantifying why tropospheric OH varies between global models, provided essential chemical fields are archived

    76 T dwarfs from the UKIDSS LAS : benchmarks, kinematics and an updated space density

    Get PDF
    We report the discovery of 76 new T dwarfs from the UKIRT Infrared Deep Sky Survey (UKIDSS) Large Area Survey (LAS). Near-infrared broad- and narrow-band photometry and spectroscopy are presented for the new objects, along with Wide-field Infrared Survey Explorer (WISE) and warm-Spitzer photometry. Proper motions for 128 UKIDSS T dwarfs are presented from a new two epoch LAS proper motion catalogue. We use these motions to identify two new benchmark systems: LHS 6176AB, a T8p+M4 pair and HD 118865AB, a T5.5+F8 pair. Using age constraints from the primaries and evolutionary models to constrain the radii, we have estimated their physical properties from their bolometric luminosity. We compare the colours and properties of known benchmark T dwarfs to the latest model atmospheres and draw two principal conclusions. First, it appears that the H - [4.5] and J - W2 colours are more sensitive to metallicity than has previously been recognized, such that differences in metallicity may dominate over differences in T-eff when considering relative properties of cool objects using these colours. Secondly, the previously noted apparent dominance of young objects in the late-T dwarf sample is no longer apparent when using the new model grids and the expanded sample of late-T dwarfs and benchmarks. This is supported by the apparently similar distribution of late-T dwarfs and earlier type T dwarfs on reduced proper motion diagrams that we present. Finally, we present updated space densities for the late-T dwarfs, and compare our values to simulation predictions and those from WISE.Peer reviewe

    Analysis of Satellite-Derived Arctic Tropospheric BrO Columns in Conjunction with Aircraft Measurements During ARCTAS and ARCPAC

    Get PDF
    We derive tropospheric column BrO during the ARCTAS and ARCPAC field campaigns in spring 2008 using retrievals of total column BrO from the satellite UV nadir sensors OMI and GOME-2 using a radiative transfer model and stratospheric column BrO from a photochemical simulation. We conduct a comprehensive comparison of satellite-derived tropospheric BrO column to aircraft in-situ observations ofBrO and related species. The aircraft profiles reveal that tropospheric BrO, when present during April 2008, was distributed over a broad range of altitudes rather than being confined to the planetary boundary layer (PBL). Perturbations to the total column resulting from tropospheric BrO are the same magnitude as perturbations due to longitudinal variations in the stratospheric component, so proper accounting of the stratospheric signal is essential for accurate determination of satellite-derived tropospheric BrO. We find reasonably good agreement between satellite-derived tropospheric BrO and columns found using aircraft in-situ BrO profiles, particularly when satellite radiances were obtained over bright surfaces (albedo> 0.7), for solar zenith angle < 80 and clear sky conditions. The rapid activation of BrO due to surface processes (the bromine explosion) is apparent in both the OMI and GOME-2 based tropospheric columns. The wide orbital swath of OMI allows examination of the evolution of tropospheric BrO on about hourly time intervals near the pole. Low surface pressure, strong wind, and high PBL height are associated with an observed BrO activation event, supporting the notion of bromine activation by high winds over snow
    corecore