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3. Preliminary results for expected changes in OH™RCP

1. Scientific motivation for studying tropospheric OH

On [OH] 5 from:
CH1CCls4

Methane Oxidation and OH Previous Work on OHTROP Trends

* Under low NO,, the oxidation of CH, destroys HO,

Sensitivity of OHTROP to climate
change

years; yet many sources use a CH, lifetime of ~12 years, which
was found by modeling studies described in IPCC (2001)
* The 12 year CH, lifetime is central to subsequent IPCC reports

preliminary results

* Under high NO,, the oxidation of CH, produces HO, 4000 ——— RCIP CH, - _ § g:ﬁi?:fi:zf;
 Loss of methylperoxy radical CH,0, with NO or HO, is critical 35005 s : * Montzka et al., 2011 found that OH™®? does not vary interannually (from 1997 to present) & Bousquetet al, (
: . e Future levels of CH, and NO, are highly uncertain S E £
* IPCC (2001) predicted future OH would fall due to rising CH, : - : : Sy - * Prior studies by Prinn et al., 2001 and Bousquet et al., 2005 suggest large interannual variability in <
+ Best knowledge of global tropospheric OH (OHTP) comes — CH, between now and 2100 varies dramatically among 3 3000 *° 2 E opTRoP (1985-2»2)00) ' 9 ' &8 & Y
: : RCP scenarios Q - ]
from analysis of CH,CCl; observations NG, bot 42100 will d ; other th < 2500 -
* The CH, lifetime inferred from OH™OP based on CH,CCl, is 8.9 — MY DETWEEN NOW an will depend on whethertne = & @@ @ @ e : . . . . .
4 373 developing world implements selective catalytic reduction” 20005— Globol Mear: Dlugokencly _— «\- We suggest the OH™OP behavior in all three studies may be physically possible, based on our

on coal power plants and catalytic converters on cars
* Future OH™%" will also depend on overhead column O,
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and is called the ”perturbation lifetime” Io.cal hurrndlty, and.biogenic emission of VOCS,.etC. 1950 2000 2050 21004 Current Conclusions from OHTROP Analysis
« Our work is motivated by understanding: * Given this complexity, we expect CCMs to project
_ . : a wide range of values for OH™°? during the rest
what factors other than rising CH, will affect QHTROP of this centur * Effect of CH, on OH™P s taken from IPCC (2001), Section 4.2.1.1, which states that “the feed-
— veracity of notion that future OH™°" will decline y 2000 2030

back of CH, on tropospheric OH” found using contemporary chemical transport models is —0.32% T e O S
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for every 1% increase in CH, (red line, middle panel of figure to right) .
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CCM calculations, for years 2000
(38.0 Tg N / yr total) and 2030
(67.6 Tg N / yr total). From
Eyring et al., ACP, 2007.

~avs * Rising H,0 from MERRA and AIRS increases OH™9? (orange lines) by an amount comparable
to the decrease expected from rising CH,

* OH serves as the main sink for many species: CO, CH,, s | - - “Lavs ars |
CH,CCl;, all HCFCs and HFCs, biogenic VOCs (isoprene and
terpene), anthropogenic VOCs (formaldehyde, benzene,
toluene, etc.)

* HO, is integral to O, formation and destruction pathways;

alone, HO, depletes O;, but with NO, and VOCs, HO, creates O,
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* Overall expected change in OH™RO? (bottom panel) shows higher level of interannual variability
prior to ~1999 and lower variability thereafter .
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2. Methods for estimating changes in OH™°" 4. Future plans for refining estimates of AOHTROP
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* Initial modern-day conditions for OH are taken 10.06 ORBONA | /,\ A | A A f{ A A Yﬂ ~ 3 | | Total column O, trends were obtained from the d(OH ) l d(HZO)  We \{Vlll uge a box model (details below) to probe * Through our involvement with the IGAC / SPARC
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S 1208 THF NSRS TSN OAS I - are archived for reactions such as:
S 10.0F ' . _ MERRA: 0.202%/yr  ARS: 0.313%/yr = Instruments

» Monthly mean mixing ratios of OH and related x 14.0F" 3‘1?»\ A A A A A NN . . H,O + O('D) = 20H Box Model 1. hourly, instantaneous output from participating
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latitude, 72 pressure level grid 60 A_A_D_A_A_DA_A_A A 3 impact on J(O5) = O("D) of decreasing initial GEOS - Using these reaction rates we will determine Troposphere (COMBO) box model provided b

3:8: A ﬁiﬁRRAﬁ?S?ﬁﬁ—ﬁs 0173%/yr = CCM overhead 03 columns by amount suggested by the proportion of OH that is produced via ch P E (JHU) P y 2. archival of all species, reaction rates, J-values,
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overhead O, are applied to Initial OH field . oon — oo poos o oy Yzmz * OH™OPis assumed to change by the square root of * The determined scaling factor would be used to * 118 species, 321 thermal reactions, and 81 chemistry
Year J(0,) = O('D) calculate a new AOH™ROP based on the H,O photolysis reactions

Annual Average Tropospheric OH column, GEOSCCM
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MERRA & AIRS H,0

* Specific humidity files from the NASA Modern-Era
Retrospective analysis for Research and Applications
(MERRA) starting prior to 1985, and

* H,0 mixing ratio files from the NASA Atmospheric
Infrared Sounder (AIRS) starting in 2002 were used to
establish trends in H,0 by latitude

* OH™OP s assumed to follow the square root of the
change in H,0 using a steady-state assumption

* We plan to refine the effect of changing H,0 on
OHTROP by examining reaction rates from archived
runs of GEOS CCM

Delta Cel O, time series, relative to 1985, TOMS/OMI/SBUV Observations
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trends

« Estimate time- and pressure-varying values of
d(OHTROP) / d(H,0)

« Evaluate discrepancies between MERRA and
AIRS H,0 trends

* 5 modules:
—Aerosol optical depth & surface area
—Photolysis scheme
—Thermal reactions scheme
—Differential egn solver
—Input-output
* Fast-JX photolysis & SMVGEAR Il solver

3. this output for both the REF-C1 (hindcast) and
REF-C2 (future) runs

* We plan to assess the causes of differences
between OH in the CCMs

e Use of the box model enables us to distinguish
between OH differences due to chemical

Propagate Uncertainties

e Calculate uncertainties in AIRS and MERRA
H,O and NASA O, product

« Evaluate standard deviation in average fraction
of OH production occurring via H,O + O('D)

« Estimate uncertainty in the box model
evaluation of d(OH™ROP) / d(CH,)

mechanism and those due to differences in OH
precursors

* We can also use this output to predict future trends
in OH™O®? ‘based on CH,, H,0, and overhead O, from

the future CCM runs




