Evaluating Effects of H₂O and Overhead O₃ on Global Mean Tropospheric OH Concentration Julie M. Nicely¹, R. J. Salawitch¹, T. Canty¹, C. Lang², B. N. Duncan³, Q. Liang³, L. D. Oman³, R. S. Stolarski², D. W. Waugh² ¹University of Maryland, College Park, Md; ²Johns Hopkins University, Baltimore, Md; ³NASA Goddard Space Flight Center, Greenbelt, Md ## 1. Scientific motivation for studying tropospheric OH ## **Sensitivity of OHTROP to climate** change - IPCC (2001) predicted future OH would fall due to rising CH₄ - Best knowledge of global tropospheric OH (OH^{TROP}) comes from analysis of CH₃CCl₃ observations - The CH₄ lifetime inferred from OH^{TROP} based on CH₃CCl₃ is 8.9 years; yet many sources use a CH₁ lifetime of ~12 years, which was found by modeling studies described in IPCC (2001) • The 12 year CH₁ lifetime is central to subsequent IPCC reports and is called the "perturbation lifetime" - Our work is motivated by understanding: - what factors other than rising CH₄ will affect OH^{TROP} veracity of notion that future OH^{TROP} will decline ## Importance of OH^{TROP} - OH serves as the main sink for many species: CO, CH₄, CH₃CCl₃, all HCFCs and HFCs, biogenic VOCs (isoprene and terpene), anthropogenic VOCs (formaldehyde, benzene, toluene, etc.) - HO_x is integral to O₃ formation and destruction pathways; alone, HO_x depletes O₃, but with NO_x and VOCs, HO_x creates O₃ #### **Methane Oxidation and OH** Under low NO_x, the oxidation of CH₄ destroys HO_x - NO_x between now and 2100 will depend on whether the developing world implements selective catalytic reduction on coal power plants and catalytic converters on cars - Future OH^{TROP} will also depend on overhead column O₃, local humidity, and biogenic emission of VOCs, etc. • Given this complexity, we expect CCMs to project - a wide range of values for OHTROP during the rest of this century NO_v emissions from industry, power generation, traffic, domestic heating, and biomass burning used as input for prior CCM calculations, for years 2000 (38.0 Tg N / yr total) and 2030 (67.6 Tg N / yr total). From # 3. Preliminary results for expected changes in OHTROP #### **Previous Work on OHTROP Trends** - Montzka et al., 2011 found that OHTROP does not vary interannually (from 1997 to present) - Prior studies by Prinn et al., 2001 and Bousquet et al., 2005 suggest large interannual variability in OH^{TROP} (1985-2000) - We suggest the OHTROP behavior in all three studies may be physically possible, based on our preliminary results - Effect of CH₄ on OH^{TROP} is taken from IPCC (2001), Section 4.2.1.1, which states that "the feedback of CH₄ on tropospheric OH" found using contemporary chemical transport models is -0.32% for every 1% increase in CH₄ (red line, middle panel of figure to right) - Primary effect of overhead O₃ is rise in OH^{TROP} following the 1991 eruption of Mount Pinatubo (green dashed line) due to enhanced removal of stratospheric O₃ by volcanic aerosol - Rising H₂O from MERRA and AIRS increases OH^{TROP} (orange lines) by an amount comparable to the decrease expected from rising CH₄ - Overall expected change in OH^{TROP} (bottom panel) shows higher level of interannual variability prior to ~1999 and lower variability thereafter # 2. Methods for estimating changes in OH^{TROP} Eyring et al., ACP, 2007. #### **Base Case OH Conditions** - Initial modern-day conditions for OH are taken from a time-slice run of GEOS CCM using 2005 emissions - Monthly mean mixing ratios of OH and related species are provided on a 144 longitude, 91 latitude, 72 pressure level grid - Calculated changes in OH due to H₂O and overhead O₃ are applied to initial OH field # MERRA & AIRS H₂O - Specific humidity files from the NASA Modern-Era Retrospective analysis for Research and Applications (MERRA) starting prior to 1985, and - H₂O mixing ratio files from the NASA Atmospheric Infrared Sounder (AIRS) starting in 2002 were used to establish trends in H₂O by latitude - OH^{TROP} is assumed to follow the square root of the change in H₂O using a steady-state assumption - We plan to refine the effect of changing H₂O on OH^{TROP} by examining reaction rates from archived runs of GEOS CCM ## Overhead O₃ Observations - Total column O₂ trends were obtained from the NASA merged O₃ data set, consisting of measurements from SBUV, TOMS, and Aura OMI instruments - We then use our photolysis code to estimate the impact on $J(O_3) \rightarrow O(^1D)$ of decreasing initial GEOS CCM overhead O₃ columns by amount suggested by the NASA product - OH^{TROP} is assumed to change by the square root of $J(O_3) \rightarrow O(^1D)$ # 4. Future plans for refining estimates of ΔOH^{TROP} #### **Improve Estimate of** $d(OH^{TROP}) / d(H_2O)$ Reaction rates from recent runs of GEOS CCM are archived for reactions such as: $H_2O + O(^1D) \rightarrow 2OH$ - Using these reaction rates we will determine the proportion of OH that is produced via reaction with H₂O - The determined scaling factor would be used to calculate a new ΔOH^{TROP} based on the H₂O - Estimate time- and pressure-varying values of $d(OH^{TROP}) / d(H_2O)$ - Evaluate discrepancies between MERRA and AIRS H₂O trends #### Evaluate CH₄/OH Feedback relationship between CH₄ and OH^{TROP} and its dependence on NO_x #### **Box Model** - We will use the GSFC Combined Stratosphere-Troposphere (COMBO) box model provided by Chang Lang (JHU): - GMI chemical mechanism - 118 species, 321 thermal reactions, and 81 photolysis reactions - 5 modules: - -Aerosol optical depth & surface area - -Photolysis scheme - -Thermal reactions scheme -Differential eqn solver - -Input-output - Fast-JX photolysis & SMVGEAR II solver # **Propagate Uncertainties** - Calculate uncertainties in AIRS and MERRA H₂O and NASA O₃ product - Evaluate standard deviation in average fraction of OH production occurring via $H_2O + O(^1D)$ - Estimate uncertainty in the box model evaluation of d(OH^{TROP}) / d(CH₄) # Assessing OH^{TROP} in CCMs - We will use a box model (details below) to probe | | Through our involvement with the IGAC / SPARC Chemistry-Climate Model Initiative, we have requested: - L. hourly, instantaneous output from participating CCMs 1 day/season, 1 year/decade - 2. archival of all species, reaction rates, J-values, and physical parameters relevant to OH chemistry - 3. this output for both the REF-C1 (hindcast) and REF-C2 (future) runs - We plan to assess the causes of differences between OH in the CCMs - Use of the box model enables us to distinguish between OH differences due to chemical mechanism and those due to differences in OH precursors - We can also use this output to predict future trends in OH^{TROP}, based on CH₄, H₂O, and overhead O₃ from the future CCM runs