457 research outputs found

    FRCM-to-masonry bonding behaviour in the case of curved surfaces: Experimental investigation

    Get PDF
    Fabric-reinforced cementitious matrix (FRCM) are composite materials more and more used for the reinforcement of masonry structures. The combination of high tensile strength fabrics (or meshes) with cementitious matrices, having good thixotropic capabilities and vapour permeability, makes such composites suitable for reinforcing a large number of masonry structures, including the one belonging to the historic heritage. FRCMs are bonded to the outer surfaces of structural masonry elements and, thanks to their adhesive capacity, bear much of the tensile stresses that unreinforced masonry cannot withstand. The effectiveness of such reinforcements, which is highly dependent on their ability to adhere to the masonry substrate, is generally investigated throughout specific experimental investigations (shear tests). Almost all the papers in the literature devoted to bond-slip analysis refer to the case of flat bonding surfaces, although these reinforcements are also widely used on curved structural elements such as arches and vaults. Therefore, this paper reports and examines the results of an extensive experimental program concerning the behavior of FRCM systems applied on curved masonry specimens. The results point out the influence of both curvature and reinforcement position (intrados or extrados) on the response of specimens in terms of bearing capacity, failure mode and post-peak response

    The effect of plant density with different row spacing on quality of the fatty acid composition and grain yield of sunflower

    Get PDF
    This research was aimed to assess the influence of density with different row spacing on sunflower crop in two different locations in southern Italy. The experiment was laid out in a randomized block design with four replicates. It involved the comparison of sunflower grown in the field on 25 m2-2), obtained by keeping a constant number of plants within the row (3 plants m-1) and varying the spacing between rows (0.4, 0.6 and 0.8 m). In the crops grown at the density of 7.5 plants m-2 (0.4 m row spacing) achene and oil yields were significantly lower as compared to the other treatments. Therefore, the mean values of the two trials did not show any statistical difference between the two densities of 3.75 and 5 plants m-2 (0.8 and 0.6 m row spacing, respectively). However, the superiority in the quality of the fatty acid composition was observed in the crops grown at lower density. Therefore, the row spacing of 0.8 m seems to be a good compromise between achene production and good acid composition of oil.Key words: Helianthus annuus L, plant distribution, plant density, achene yield, oil fatty acid composition

    Microwave ac Zeeman Force for Ultracold Atoms

    Get PDF
    We measure the ac Zeeman force on an ultracold gas of 87Rb due to a microwave magnetic field targeted to the 6.8 GHz hyperfine splitting of these atoms. An atom chip produces a microwave near field with a strong amplitude gradient, and we observe a force over three times the strength of gravity. Our measurements are consistent with a simple two-level theory for the ac Zeeman effect and demonstrate its resonant, bipolar, and spin-dependent nature. We observe that the dressed-atom eigenstates gradually mix over time and have mapped out this behavior as a function of magnetic field and detuning. We demonstrate the practical spin selectivity of the force by pushing or pulling a specific spin state while leaving other spin states unmoved

    Global analysis of neutrino masses, mixings and phases: entering the era of leptonic CP violation searches

    Get PDF
    We perform a global analysis of neutrino oscillation data, including high-precision measurements of the neutrino mixing angle theta_13 at reactor experiments, which have confirmed previous indications in favor of theta_13>0. Recent data presented at the Neutrino 2012 Conference are also included. We focus on the correlations between theta_13 and the mixing angle theta_23, as well as between theta_13 and the neutrino CP-violation phase delta. We find interesting indications for theta_23< pi/4 and possible hints for delta ~ pi, with no significant difference between normal and inverted mass hierarchy.Comment: Updated version, including recent data released at the Neutrino 2012 Conference. Some references adde

    Where we are on θ13\theta_{13}: addendum to "Global neutrino data and recent reactor fluxes: status of three-flavour oscillation parameters"

    Get PDF
    In this addendum to arXiv:1103.0734 we consider the recent results from long-baseline νμνe\nu_\mu\to\nu_e searches at the T2K and MINOS experiments and investigate their implications for the mixing angle θ13\theta_{13} and the leptonic Dirac CP phase δ\delta. By combining the 2.5σ2.5\sigma indication for a non-zero value of θ13\theta_{13} coming from T2K data with global neutrino oscillation data we obtain a significance for θ13>0\theta_{13} > 0 of about 3σ3\sigma with best fit points sin2θ13=0.013(0.016)\sin^2\theta_{13} = 0.013(0.016) for normal (inverted) neutrino mass ordering. These results depend somewhat on assumptions concerning the analysis of reactor neutrino data.Comment: 5 pages, 2 figures and 1 tabl

    Golden Ratio Prediction for Solar Neutrino Mixing

    Full text link
    It has recently been speculated that the solar neutrino mixing angle is connected to the golden ratio phi. Two such proposals have been made, cot theta_{12} = phi and cos theta_{12} = phi/2. We compare these Ansatze and discuss a model leading to cos theta_{12} = phi/2 based on the dihedral group D_{10}. This symmetry is a natural candidate because the angle in the expression cos theta_{12} = phi/2 is simply pi/5, or 36 degrees. This is the exterior angle of a decagon and D_{10} is its rotational symmetry group. We also estimate radiative corrections to the golden ratio predictions.Comment: 15 pages, 1 figure. Matches published versio

    Geo-neutrinos: A systematic approach to uncertainties and correlations

    Get PDF
    Geo-neutrinos emitted by heat-producing elements (U, Th and K) represent a unique probe of the Earth interior. The characterization of their fluxes is subject, however, to rather large and highly correlated uncertainties. The geochemical covariance of the U, Th and K abundances in various Earth reservoirs induces positive correlations among the associated geo-neutrino fluxes, and between these and the radiogenic heat. Mass-balance constraints in the Bulk Silicate Earth (BSE) tend instead to anti-correlate the radiogenic element abundances in complementary reservoirs. Experimental geo-neutrino observables may be further (anti)correlated by instrumental effects. In this context, we propose a systematic approach to covariance matrices, based on the fact that all the relevant geo-neutrino observables and constraints can be expressed as linear functions of the U, Th and K abundances in the Earth's reservoirs (with relatively well-known coefficients). We briefly discuss here the construction of a tentative "geo-neutrino source model" (GNSM) for the U, Th, and K abundances in the main Earth reservoirs, based on selected geophysical and geochemical data and models (when available), on plausible hypotheses (when possible), and admittedly on arbitrary assumptions (when unavoidable). We use then the GNSM to make predictions about several experiments ("forward approach"), and to show how future data can constrain - a posteriori - the error matrix of the model itself ("backward approach"). The method may provide a useful statistical framework for evaluating the impact and the global consistency of prospective geo-neutrino measurements and Earth models.Comment: 17 pages, including 4 figures. To appear on "Earth, Moon, and Planets," Special Issue on "Neutrino Geophysics," Proceedings of Neutrino Science 2005 (Honolulu, Hawaii, Dec. 2005

    The METCRAX II Field Experiment: A Study of Downslope Windstorm-Type Flows in Arizona\u2019s Meteor Crater

    Get PDF
    The second Meteor Crater Experiment (METCRAX II) was conducted in October 2013 at Arizona\u2019s Meteor Crater. The experiment was designed to investigate nighttime downslope windstorm 12type flows that form regularly above the inner southwest sidewall of the 1.2-km diameter crater as a southwesterly mesoscale katabatic flow cascades over the crater rim. The objective of METCRAX II is to determine the causes of these strong, intermittent, and turbulent inflows that bring warm-air intrusions into the southwest part of the crater. This article provides an overview of the scientific goals of the experiment; summarizes the measurements, the crater topography, and the synoptic meteorology of the study period; and presents initial analysis results

    Phase-Resolved Rydberg Atom Field Sensing using Quantum Interferometry

    Full text link
    Although Rydberg atom-based electric field sensing provides key advantages over traditional antenna-based detection, it remains limited by the need for a local oscillator (LO) for low-field and phase resolved detection. In this work, we demonstrate that closed-loop quantum interferometric schemes can be used to generate a system-internal reference that can directly replace an external LO for Rydberg field sensing. We reveal that this quantum-interferometrically defined internal reference phase and frequency can be used analogously to a traditional LO for atom-based down-mixing to an intermediate frequency for lock-in phase detection. We demonstrate that this LO-equivalent functionality provides analogous benefits to an LO, including full 360^\circ phase resolution as well as improved sensitivity. The general applicability of this approach is confirmed by demodulating a four phase-state signal broadcast on the atoms. Our approach opens up new sensing schemes and provides a clear path towards all-optical Rydberg atom sensing implementations

    Detection of HF and VHF Fields through Floquet Sideband Gaps by `Rabi Matching' Dressed Rydberg Atoms

    Get PDF
    Radio frequencies in the HF and VHF (3 MHz to 300 MHz) bands are challenging for Rydberg atom-based detection schemes, as resonant detection requires exciting the atoms to extremely high energy states. We demonstrate a method for detecting and measuring radio frequency (RF) carriers in the HF and VHF bands via a controlled Autler-Townes line splitting. Using a resonant, high-frequency (GHz) RF field, the absorption signal from Townes-Merrit sidebands created by a low frequency, non-resonant RF field can be enhanced. Notably, this technique uses a measurement of the optical frequency separation of an avoided crossing to determine the amplitude of a non-resonant, low frequency RF field. This technique also provides frequency-selective measurements of low frequency RF electric fields. To show this, we demonstrate amplitude modulated signal transduction on a low frequency VHF carrier. We further demonstrate reception of multiple tones simultaneously, creating a Rydberg `spectrum analyzer' over the VHF range.Comment: Data for figures can be found at: https://datapub.nist.gov/od/id/mds2-285
    corecore