357 research outputs found

    Fully coordinated silica nanoclusters: (SiO2)(N) molecular rings

    Get PDF
    A new form of finite silica with edge-sharing SiO2 units connected in a ring is proposed. High-level density-functional calculations for (SiO2)(N), N = 4-14, show the rings to be energetically more stable than the corresponding (SiO2)(N) linear chains for N > 11. The rings display frequency modes in remarkable agreement with infrared bands measured on dehydrated silica surfaces indicating their potential as models of strained extended silica systems. Silica rings, if synthesized, may also be useful precursors for new bulk-silica polymorphs with tubular or porous morphologies

    Production of High Quality Syncrude from Lignocellulosic Biomass

    Full text link
    [EN] Wood chips were hydrothermally treated in near critical point water in the presence of a catalyst to yield a raw biocrude, containing a wide range of organic components. This product was subsequently distilled to remove its heaviest fraction, which tends to yield chary products if heated above 350 degrees C. The biocrude obtained has an oxygen content of 12wt% and was subsequently hydrotreated to obtain a hydrocarbon stream. Varying the hydrotreatment operating conditions and catalyst yielded a deoxygenated syncrude which quality improved with operation severity. The hydroprocessed stream produced under very mild conditions can be further upgraded in conventional refinery operations while the stream produced after more severe hydrotreatment can be mixed with conventional diesel. This proof of concept was demonstrated with commercial hydrotreating catalysts, operating between 350 and 380 degrees C, 40 to 120bar pressure and 0.5 to 1h(-1) contact time.The authors thank Licella for material and financial support, as well as providing the biocrude used for the hydrotreating experiments. Licella gratefully acknowledges support from the Australian Government in the form of funding as part of the Advanced Biofuels Investment Readiness Program, received through the Australian Renewable Energy Agency (ARENA). Financial support by the Spanish Government-MINECO through program "Severo Ochoa" (SEV 2012-0267), CTQ2015-70126-R (MINECO/FEDER), and by the Generalitat Valenciana through the Prometeo program (PROMETEOII/2013/011) is also acknowledged.Mathieu, Y.; Sauvanaud, LL.; Humphreys, L.; Rowlands, W.; Maschmeyer, T.; Corma Canós, A. (2017). Production of High Quality Syncrude from Lignocellulosic Biomass. ChemCatChem. 9(9):1574-1578. https://doi.org/10.1002/cctc.201601677S1574157899Huber, G. W., & Corma, A. (2007). Synergies between Bio- and Oil Refineries for the Production of Fuels from Biomass. Angewandte Chemie International Edition, 46(38), 7184-7201. doi:10.1002/anie.200604504Huber, G. W., & Corma, A. (2007). Synergien zwischen Bio- und Ölraffinerien bei der Herstellung von Biomassetreibstoffen. Angewandte Chemie, 119(38), 7320-7338. doi:10.1002/ange.200604504U.S. Department of Energy 2016.2016 Billion-Ton Report: Advancing Domestic Resources for a Thriving Bioeconomy Volume 1: Economic Availability of Feedstocks. M. H. Langholtz B. J. Stokes L. M. Eaton (Leads) ORNL/TM-2016/160. Oak Ridge National Laboratory Oak Ridge TN. 448p. DOI:10.2172/1271651.Klein-Marcuschamer, D., & Blanch, H. W. (2015). Renewable fuels from biomass: Technical hurdles and economic assessment of biological routes. AIChE Journal, 61(9), 2689-2701. doi:10.1002/aic.14755Maitlis, P. M., & de Klerk, A. (2013). New Directions, Challenges, and Opportunities. Greener Fischer-Tropsch Processes for Fuels and Feedstocks, 337-358. doi:10.1002/9783527656837.ch16De Miguel Mercader, F., Groeneveld, M. J., Kersten, S. R. A., Geantet, C., Toussaint, G., Way, N. W. J., … Hogendoorn, K. J. A. (2011). Hydrodeoxygenation of pyrolysis oil fractions: process understanding and quality assessment through co-processing in refinery units. Energy & Environmental Science, 4(3), 985. doi:10.1039/c0ee00523aGoudriaan, F., & Peferoen, D. G. R. (1990). Liquid fuels from biomass via a hydrothermal process. Chemical Engineering Science, 45(8), 2729-2734. doi:10.1016/0009-2509(90)80164-aPeterson, A. A., Vogel, F., Lachance, R. P., Fröling, M., Antal, Jr., M. J., & Tester, J. W. (2008). Thermochemical biofuel production in hydrothermal media: A review of sub- and supercritical water technologies. Energy & Environmental Science, 1(1), 32. doi:10.1039/b810100kToor, S. S., Rosendahl, L., & Rudolf, A. (2011). Hydrothermal liquefaction of biomass: A review of subcritical water technologies. Energy, 36(5), 2328-2342. doi:10.1016/j.energy.2011.03.013Oasmaa, A., & Czernik, S. (1999). Fuel Oil Quality of Biomass Pyrolysis OilsState of the Art for the End Users. Energy & Fuels, 13(4), 914-921. doi:10.1021/ef980272bElliott, D. C., Biller, P., Ross, A. B., Schmidt, A. J., & Jones, S. B. (2015). Hydrothermal liquefaction of biomass: Developments from batch to continuous process. Bioresource Technology, 178, 147-156. doi:10.1016/j.biortech.2014.09.132http://www.licella.com.au/commercial-demonstration-plant/.L. J.Humphreys (Ignite Energy Resources Pty Ltd) WO Pat. 2011/032202(A1) 2011.T.Maschmeyer L. J.Humphreys (Licella Pty Ltd) WO Pat. 2011/123897(A1) 2011.Wang, W., Yang, Y., Luo, H., Hu, T., & Liu, W. (2011). Amorphous Co–Mo–B catalyst with high activity for the hydrodeoxygenation of bio-oil. Catalysis Communications, 12(6), 436-440. doi:10.1016/j.catcom.2010.11.001Monnier, J., Sulimma, H., Dalai, A., & Caravaggio, G. (2010). Hydrodeoxygenation of oleic acid and canola oil over alumina-supported metal nitrides. Applied Catalysis A: General, 382(2), 176-180. doi:10.1016/j.apcata.2010.04.035Kubička, D., & Kaluža, L. (2010). Deoxygenation of vegetable oils over sulfided Ni, Mo and NiMo catalysts. Applied Catalysis A: General, 372(2), 199-208. doi:10.1016/j.apcata.2009.10.034Huber, G. W., O’Connor, P., & Corma, A. (2007). Processing biomass in conventional oil refineries: Production of high quality diesel by hydrotreating vegetable oils in heavy vacuum oil mixtures. Applied Catalysis A: General, 329, 120-129. doi:10.1016/j.apcata.2007.07.002Anthonykutty, J. M., Van Geem, K. M., De Bruycker, R., Linnekoski, J., Laitinen, A., Räsänen, J., … Lehtonen, J. (2013). Value Added Hydrocarbons from Distilled Tall Oil via Hydrotreating over a Commercial NiMo Catalyst. Industrial & Engineering Chemistry Research, 52(30), 10114-10125. doi:10.1021/ie400790vH. P.Ruyter J. H. J.Annee (Shell Oil Co) US Pat. no. 4670613A 1987.S. Jones et al. Process Design and Economics for the Conversion of Algal Biomass to Hydrocarbons: Whole Algae Hydrothermal Liquefaction and Upgrading PNNL report 23227 2014.Baker, E. G., & Elliott, D. C. (1988). Catalytic Hydrotreating of Biomass-Derived Oils. Pyrolysis Oils from Biomass, 228-240. doi:10.1021/bk-1988-0376.ch021Kubička, D., & Horáček, J. (2011). Deactivation of HDS catalysts in deoxygenation of vegetable oils. Applied Catalysis A: General, 394(1-2), 9-17. doi:10.1016/j.apcata.2010.10.03

    Opportunities in upgrading biomass crudes

    Full text link
    [EN] An unconventional crude from biomass (biocrude) has been processed to yield a hydrocarbon stream that is not only fully processable in conventional refineries but is already close to the specification of commercial fuels such as transportation diesel. The upgrading of biocrude was carried out with a combination of hydrotreatment and catalytic cracking, yielding middle distillate as the main product.The authors thank Licella for material and financial support, as well as providing the biocrude used for the hydrotreating experiments. Licella gratefully acknowledges support from the Australian Government in the form of funding as part of the Advanced Biofuels Investment Readiness Program, received through the Australian Renewable Energy Agency (ARENA). Financial support by the Spanish Government-MINECO through program "Severo Ochoa" (SEV 2012-0267), CTQ2015-70126-R (MINECO/FEDER), and by the Generalitat Valenciana through the Prometeo program (PROMETEOII/2013/011) is also acknowledged.Mathieu, Y.; Sauvanaud, LL.; Humphreys, L.; Rowlands, W.; Maschmeyer, T.; Corma Canós, A. (2017). Opportunities in upgrading biomass crudes. Faraday Discussions. 197:389-401. https://doi.org/10.1039/c6fd00208kS389401197U.S. Department of Energy. 2016. 2016 Billion-Ton Report: Advancing Domestic Resources for a Thriving Bioeconomy, Volume 1: Economic Availability of Feedstocks. M. H. Langholtz, B. J. Stokes, and L. M. Eaton (Leads), ORNL/TM-2016/160. Oak Ridge National Laboratory, Oak Ridge, TN. 448ppP. M. Maitlis and A.de Klerk, Greener Fischer-Tropsch Processes for Fuels and Feedstocks, Wiley, 2013, ch. 16De Miguel Mercader, F., Groeneveld, M. J., Kersten, S. R. A., Geantet, C., Toussaint, G., Way, N. W. J., … Hogendoorn, K. J. A. (2011). Hydrodeoxygenation of pyrolysis oil fractions: process understanding and quality assessment through co-processing in refinery units. Energy & Environmental Science, 4(3), 985. doi:10.1039/c0ee00523aGoudriaan, F., & Peferoen, D. G. R. (1990). Liquid fuels from biomass via a hydrothermal process. Chemical Engineering Science, 45(8), 2729-2734. doi:10.1016/0009-2509(90)80164-aPeterson, A. A., Vogel, F., Lachance, R. P., Fröling, M., Antal, Jr., M. J., & Tester, J. W. (2008). Thermochemical biofuel production in hydrothermal media: A review of sub- and supercritical water technologies. Energy & Environmental Science, 1(1), 32. doi:10.1039/b810100kToor, S. S., Rosendahl, L., & Rudolf, A. (2011). Hydrothermal liquefaction of biomass: A review of subcritical water technologies. Energy, 36(5), 2328-2342. doi:10.1016/j.energy.2011.03.013Oasmaa, A., & Czernik, S. (1999). Fuel Oil Quality of Biomass Pyrolysis OilsState of the Art for the End Users. Energy & Fuels, 13(4), 914-921. doi:10.1021/ef980272bhttp://www.licella.com.au/commercial-demonstration-plant/Bridgwater, A. V. (1994). Catalysis in thermal biomass conversion. Applied Catalysis A: General, 116(1-2), 5-47. doi:10.1016/0926-860x(94)80278-5De Miguel Mercader, F., Groeneveld, M. J., Kersten, S. R. A., Way, N. W. J., Schaverien, C. J., & Hogendoorn, J. A. (2010). Production of advanced biofuels: Co-processing of upgraded pyrolysis oil in standard refinery units. Applied Catalysis B: Environmental, 96(1-2), 57-66. doi:10.1016/j.apcatb.2010.01.033Wang, C., Li, M., & Fang, Y. (2016). Coprocessing of Catalytic-Pyrolysis-Derived Bio-Oil with VGO in a Pilot-Scale FCC Riser. Industrial & Engineering Chemistry Research, 55(12), 3525-3534. doi:10.1021/acs.iecr.5b03008Fogassy, G., Thegarid, N., Schuurman, Y., & Mirodatos, C. (2012). The fate of bio-carbon in FCC co-processing products. Green Chemistry, 14(5), 1367. doi:10.1039/c2gc35152hRezaei, P. S., Shafaghat, H., & Daud, W. M. A. W. (2014). Production of green aromatics and olefins by catalytic cracking of oxygenate compounds derived from biomass pyrolysis: A review. Applied Catalysis A: General, 469, 490-511. doi:10.1016/j.apcata.2013.09.036Hughes, R., Hutchings, G. J., Koon, C. L., McGhee, B., Snape, C. E., & Yu, D. (1996). Deactivation of FCC catalysts using n-hexadecane feed with various additives. Applied Catalysis A: General, 144(1-2), 269-279. doi:10.1016/0926-860x(96)00106-8Huber, G. W., O’Connor, P., & Corma, A. (2007). Processing biomass in conventional oil refineries: Production of high quality diesel by hydrotreating vegetable oils in heavy vacuum oil mixtures. Applied Catalysis A: General, 329, 120-129. doi:10.1016/j.apcata.2007.07.002Anthonykutty, J. M., Van Geem, K. M., De Bruycker, R., Linnekoski, J., Laitinen, A., Räsänen, J., … Lehtonen, J. (2013). Value Added Hydrocarbons from Distilled Tall Oil via Hydrotreating over a Commercial NiMo Catalyst. Industrial & Engineering Chemistry Research, 52(30), 10114-10125. doi:10.1021/ie400790vS. Jones , Y.Zu, D.Anderson, R.Allen, D.Elliot, A.Schmidt, K.Albrecht, T.Hart, M.Butcher, C.Drennan, L.Snowden-Swan, R.Davis and C.Kinchin, PNNL report 23227, March 2014Corma, A., González-Alfaro, V., & Orchillés, A. . (2001). Decalin and Tetralin as Probe Molecules for Cracking and Hydrotreating the Light Cycle Oil. Journal of Catalysis, 200(1), 34-44. doi:10.1006/jcat.2001.3181CORMA, A., & ORTEGA, F. (2005). Influence of adsorption parameters on catalytic cracking and catalyst decay. Journal of Catalysis, 233(2), 257-265. doi:10.1016/j.jcat.2005.04.02

    Invasive mould infections: a multi-disciplinary update.

    Get PDF
    Systemic fungal infections remain a significant cause of mortality in neutropenic and immunocompromised patients, despite advances in their diagnosis and treatment. The incidence of such infections is rising due to the use of intensive chemotherapy regimens in patients with solid tumours or haematological cancers, the increasing numbers of allogeneic haematopoietic stem cell and solid organ transplants, and the use of potent immunosuppressive therapy in patients with autoimmune disorders. In addition, the epidemiology of systemic fungal infections is changing, with atypical species such as Aspergillus terreus and zygomycetes becoming more common. Treatment has traditionally focused on empirical therapy, but targeted pre-emptive therapy in high-risk patients and prophylactic antifungal treatment are increasingly being adopted. New treatments, including lipid formulations of amphotericin B, second-generation broad-spectrum azoles, and echinocandins, offer effective antifungal activity with improved tolerability compared with older agents; the potential impact of these treatments is reflected in their inclusion in current treatment and prophylaxis guidelines. New treatment strategies, such as aerosolized lipid formulations of amphotericin B, may also reduce the burden of mortality associated with systemic fungal infections. The challenge is to identify ways of coupling potentially effective treatments with early and reliable identification of patients at highest risk of infection

    Continuous-Flow Alkene Metathesis: The Model Reaction of 1-Octene Catalyzed by Re2O7/alfa-Al2O3 with Supercritical CO2 as a Carrier

    Get PDF
    In the presence of Re2O7 supported on γ-Al2O3, the self-metathesis of 1-octene was conveniently carried out under continuous-flow (CF) conditions using supercritical CO2 (scCO2) as a carrier. This investigation allowed optimization of reaction parameters, the best values of which were found to be 100 °C and 90 bar, operating at flow rates of 0.05 and 1 mL min−1 for 1-octene and scCO2, respectively, the reaction proceeded with very good self-metathesis selectivity (>90%) and an average productivity of ∼0.24 mL tetradecene gRe −1 min−1 . Although the catalyst was completely deactivated after the first 100–150 min of reaction, it could be recycled for (at least) five subsequent reactions without any loss of performance. The results provided incontrovertible evidence that for the investigated reaction, scCO2was a superior carrier with respect to conventional liquids, such as toluene or n-hexane

    A comparison of photocatalytic reforming reactions of methanol and triethanolamine with Pd supported on titania and graphitic carbon nitride

    Get PDF
    © 2017 The Author(s).Direct comparison between Pd supported on P25 TiO2 and on C3N4 is made for photocatalytic hydrogen production, with UV activity being distinguished from visible light activity. Two very different, but commonly studied hole scavengers were used and compared, namely, methanol and triethanolamine (TEOA). Using full arc irradiation of a solar simulator the titania supported catalysts showed the best activity. Although with TEOA the carbon nitride supported catalyst shows some activity in visible light only, it is very small (ca. 15%) compared to that observed using the whole spectrum. When using methanol, even in the presence of UV light, the carbon nitride catalyst show only very low hydrogen yields

    Long-term follow-up of high-dose chemotherapy with autologous stem-cell transplantation and response-adapted whole-brain radiotherapy for newly diagnosed primary CNS lymphoma: results of the multicenter Ostdeutsche Studiengruppe Hämatologie und Onkologie OSHO-53 phase II study

    Get PDF
    Background We previously reported the results of a phase II study for patients with newly diagnosed primary central nervous system lymphoma treated with autologous peripheral blood stem-cell transplantation (aPBSCT) and response-adapted whole-brain radiotherapy (WBRT). Now, we update the initial results. Patients and methods From 1999 to 2004, 23 patients received high-dose methotrexate. In case of at least partial remission, high-dose busulfan/thiotepa (HD-BuTT) followed by aPBSCT was carried out. Patients refractory to induction or without complete remission after HD-BuTT received WBRT. Eight patients still alive in 2011 were contacted and Mini-Mental State Examination (MMSE) and the European Organisation for Research and Treatment of Cancer quality-of-life questionnaire (QLQ)-C30 were carried out. Results Of eight patients still alive, median follow-up is 116.9 months. Only one of nine irradiated patients is still alive with a severe neurologic deficit. In seven of eight patients treated with HD-BuTT, health condition and quality of life are excellent. MMSE and QLQ-C30 showed remarkably good results in patients who did not receive WBRT. All of them have a Karnofsky score of 90%-100%. Conclusions Follow-up shows an overall survival of 35%. In six of seven patients where WBRT could be avoided, no long-term neurotoxicity has been observed and all patients have an excellent quality of lif

    Infectious complications of targeted drugs and biotherapies in acute leukemia. Clinical practice guidelines by the European Conference on Infections in Leukemia (ECIL), a joint venture of the European Group for Blood and Marrow Transplantation (EBMT), the European Organization for Research and Treatment of Cancer (EORTC), the International Immunocompromised Host Society (ICHS) and the European Leukemia Net (ELN)

    Get PDF
    The 9th web-based European Conference on Infections in Leukemia (ECIL-9), held September 16-17, 2021, reviewed the risk of infections and febrile neutropenia associated with more recently approved immunotherapeutic agents and molecular targeted drugs for the treatment of acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL). Novel antibody based treatment approaches (inotuzumab ozogamicin, gemtuzumab ozogamicin, flotetuzumab), isocitrate dehydrogenases inhibitors (ivosidenib, enasidenib, olutasidenib), FLT3 kinase inhibitors (gilteritinib, midostaurin, quizartinib), a hedgehog inhibitor (glasdegib) as well as a BCL2 inhibitor (venetoclax) were reviewed with respect to their mode of action, their immunosuppressive potential, their current approval and the infectious complications and febrile neutropenia reported from clinical studies. Evidence-based recommendations for prevention and management of infectious complications and specific alerts regarding the potential for drug-drug interactions were developed and discussed in a plenary session with the panel of experts until consensus was reached. The set of recommendations was posted on the ECIL website for a month for comments from members of EBMT, EORTC, ICHS and ELN before final approval by the panelists. While a majority of these agents are not associated with a significantly increased risk when used as monotherapy, caution is required with combination therapy such as venetoclax plus hypomethylating agents, gemtuzumab ozogamicin plus cytotoxic drugs or midostaurin added to conventional AML chemotherapy

    Clinical efficacy of β-lactam/β-lactamase inhibitor combinations for the treatment of bloodstream infection due to extended-spectrum β-lactamase-producing Enterobacteriaceae in haematological patients with neutropaenia: a study protocol for a retrospective observational study (BICAR)

    Get PDF
    Introduction: Bloodstream infection (BSI) due to extended-spectrum β-lactamase-producing Gram-negative bacilli (ESBL-GNB) is increasing at an alarming pace worldwide. Although β-lactam/β-lactamase inhibitor (BLBLI) combinations have been suggested as an alternative to carbapenems for the treatment of BSI due to these resistant organisms in the general population, their usefulness for the treatment of BSI due to ESBL-GNB in haematological patients with neutropaenia is yet to be elucidated. The aim of the BICAR study is to compare the efficacy of BLBLI combinations with that of carbapenems for the treatment of BSI due to an ESBL-GNB in this population. Methods and analysis: A multinational, multicentre, observational retrospective study. Episodes of BSI due to ESBL-GNB occurring in haematological patients and haematopoietic stem cell transplant recipients with neutropaenia from 1 January 2006 to 31 March 2015 will be analysed. The primary end point will be case-fatality rate within 30 days of onset of BSI. The secondary end points will be 7-day and 14-day case-fatality rates, microbiological failure, colonisation/infection by resistant bacteria, superinfection, intensive care unit admission and development of adverse events. Sample size: The number of expected episodes of BSI due to ESBL-GNB in the participant centres will be 260 with a ratio of control to experimental participants of 2. Ethics and dissemination: The protocol of the study was approved at the first site by the Research Ethics Committee (REC) of Hospital Universitari de Bellvitge. Approval will be also sought from all relevant RECs. Any formal presentation or publication of data from this study will be considered as a joint publication by the participating investigators and will follow the recommendations of the International Committee of Medical Journal Editors (ICMJE). The study has been endorsed by the European Study Group for Bloodstream Infection and Sepsis (ESGBIS) and the European Study Group for Infections in Compromised Hosts (ESGICH)
    corecore