710 research outputs found

    The effect of coating properties on the performance of a-C:H and ta-C films

    Get PDF
    DLC films cover a wide range of different carbon based coatings, starting from soft to extremely hard diamond-like carbon films. In this study two different types of DLC films have been studied in respect of their stress and strain characteristics and tribological performance. The coatings are hydrogenated amorphous carbon (a-C:H) coatings deposited by PECVD and tetrahedral amorphous carbon (ta-C) coating deposited by filtered arc technique. In order to evaluate the mechanical behaviour of the coatings under load, 3D FE modelling was carried out in combination with scratch testing. Also the tribological performance was evaluated with pin-on-disc tests using stepwise increasing normal load. The 3D FEM model was developed for calculating the stress and strain distributions of DLC coated systems and to evaluate how coating thickness and elastic properties affect the stress-strain state at crack initiation location. The simulation was compared to the findings to experimental observations in scratch test contact conditions, when the spherical diamond tip was moving with increased load on a coated surface. The coating performance was evaluated with scratch testing to detect the crack generation as well as the coating adhesion. When combining the simulated coating characteristics with empirical observation of coating fracture patterns the coating fracture performance and tolerance to cracking could be evaluated. A major effect of the coating elastic modulus on the stress and fracture behaviour of the coatings was observed. In the tribological testing the both coatings had a low friction performance. In the tribological testing with stepwise increasing load, the critical load for coating delamination was higher for the a-C:H coating, which is in accordance with the results of FE modelling of coating stress state

    Inflammatory biomarker score and cancer: A population-based prospective cohort study

    Get PDF
    BACKGROUND: Inflammation is associated with cancer but there are conflicting reports on associations of biomarkers of inflammation with cancer risk and mortality. We investigated the associations of C-reactive protein (CRP) and leukocyte count with cancer risk and mortality using individual biomarkers, and an inflammatory score derived from both biomarkers. METHODS: We conducted this analysis among 2,570 men enrolled in the population-based, prospective Kuopio Ischemic Heart Disease Risk Factor Study in Finland. During an average follow-up period of 26 years, 653 cancer cases and 287 cancer deaths occurred. We computed a z-score for each participant, with the combined z-score being the sum of each individual’s CRP and leukocyte z-scores. Multivariable-adjusted Cox proportional hazard model was used to evaluate associations with cancer risk and mortality. RESULTS: Using individual biomarkers, elevated leukocyte count was associated with an increased risk of cancer (RR = 1.31, 95 % CI 1.04-1.66), and cancer mortality (RR=, 95 % CI 1.39, 0.98-1.97). The corresponding results for CRP were (RR = 1.23, 95 % CI 0.97-1.55) for risk and (RR = 1.15, 95 % CI 0.81-1.64) for cancer mortality. Associations of the biomarkers with cancer appeared to be more robust using the combined z-score. HRs comparing men within the highest z-score quartile to those within the lowest z-score quartiles were 1.47 (95 % CI 1.16-1.88, p-trend < 0.01) for cancer risk, and 1.48 (95 % CI 1.03-2.14, p-trend = 0.09) for cancer mortality. CONCLUSION: Our study suggests that inflammation is associated with cancer risk and mortality, and combining inflammatory biomarkers into a score is a robust method of elucidating this association

    Segregation, precipitation, and \alpha-\alpha' phase separation in Fe-Cr alloys: a multi-scale modelling approach

    Full text link
    Segregation, precipitation, and phase separation in Fe-Cr systems is investigated. Monte Carlo simulations using semiempirical interatomic potential, first-principles total energy calculations, and experimental spectroscopy are used. In order to obtain a general picture of the relation of the atomic interactions and properties of Fe-Cr alloys in bulk, surface, and interface regions several complementary methods has to be used. Using Exact Muffin-Tin Orbitals method the effective chemical potential as a function of Cr content (0-15 at.% Cr) is calculated for a surface, second atomic layer and bulk. At ~10 at.% Cr in the alloy the reversal of the driving force of a Cr atom to occupy either bulk or surface sites is obtained. The Cr containing surfaces are expected when the Cr content exceeds ~10 at.%. The second atomic layer forms about 0.3 eV barrier for the migration of Cr atoms between bulk and surface atomic layer. To get information on Fe-Cr in larger scales we use semiempirical methods. Using combined Monte Carlo molecular dynamics simulations, based on semiempirical potential, the precipitation of Cr into isolated pockets in bulk Fe-Cr and the upper limit of the solubility of Cr into Fe layers in Fe/Cr layer system is studied. The theoretical predictions are tested using spectroscopic measurements. Hard X-ray photoelectron spectroscopy and Auger electron spectroscopy investigations were carried out to explore Cr segregation and precipitation in Fe/Cr double layer and Fe_0.95Cr_0.05 and Fe_0.85Cr_0.15 alloys. Initial oxidation of Fe-Cr was investigated experimentally at 10^-8 Torr pressure of the spectrometers showing intense Cr_2O_3 signal. Cr segregation and the formation of Cr rich precipitates were traced by analysing the experimental spectral intensities with respect to annealing time, Cr content, and kinetic energy of the exited electron.Comment: 16 pages, 14 figures, 52 reference

    Orientation gradients in rapidly solidified pure aluminum thin films: comparison of experiments and phase-field crystal simulations

    Full text link
    Rapid solidification experiments on thin film aluminum samples reveal the presence of lattice orientation gradients within crystallizing grains. To study this phenomenon, a single-component phase-field crystal (PFC) model that captures the properties of solid, liquid, and vapor phases is proposed to model pure aluminium quantitatively. A coarse-grained amplitude representation of this model is used to simulate solidification in samples approaching micrometer scales. The simulations reproduce the experimentally observed orientation gradients within crystallizing grains when grown at experimentally relevant rapid quenches. We propose a causal connection between formation of defects and orientation gradients

    FLIM reveals alternative EV-mediated cellular up-take pathways of paclitaxel

    Get PDF
    In response to physiological and artificial stimuli, cells generate nano-scale extracellular vesicles (EVs) by encapsulating biomolecules in plasma membrane-derived phospholipid envelopes. These vesicles are released to bodily fluids, hence acting as powerful endogenous mediators in intercellular signaling. EVs provide a compelling alternative for biomarker discovery and targeted drug delivery, but their kinetics and dynamics while interacting with living cells are poorly understood. Here we introduce a novel method, fluorescence lifetime imaging microscopy (FLIM) to investigate these interaction attributes. By FLIM, we show distinct cellular uptake mechanisms of different EV subtypes, exosomes and microvesicles, loaded with anti-cancer agent, paclitaxel. We demonstrate differences in intracellular behavior and drug release profiles of paclitaxel-containing EVs. Exosomes seem to deliver the drug mostly by endocytosis while microvesicles enter the cells by both endocytosis and fusion with cell membrane. This research offers a new real-time method to investigate EV kinetics with living cells, and it is a potential advancement to complement the existing techniques. The findings of this study improve the current knowledge in exploiting EVs as next-generation targeted drug delivery systems.Peer reviewe

    Reliability of prehospital patient classification in helicopter emergency medical service missions

    Get PDF
    Background Several scores and codes are used in prehospital clinical quality registries but little is known of their reliability. The aim of this study is to evaluate the inter-rater reliability of the American Society of Anesthesiologists physical status (ASA-PS) classification system, HEMS benefit score (HBS), International Classification of Primary Care, second edition (ICPC-2) and Eastern Cooperative Oncology Group (ECOG) performance status in a helicopter emergency medical service (HEMS) clinical quality registry (CQR). Methods All physicians and paramedics working in HEMS in Finland and responsible for patient registration were asked to participate in this study. The participants entered data of six written fictional missions in the national CQR. The inter-rater reliability of the ASA-PS, HBS, ICPC-2 and ECOG were evaluated using an overall agreement and free-marginal multi-rater kappa (Kappa(free)). Results All 59 Finnish HEMS physicians and paramedics were invited to participate in this study, of which 43 responded and 16 did not answer. One participant was excluded due to unfinished data entering. ASA-PS had an overall agreement of 40.2% and Kappa(free) of 0.28 in this study. HBS had an overall agreement of 44.7% and Kappa(free) of 0.39. ICPC-2 coding had an overall agreement of 51.5% and Kappa(free) of 0.47. ECOG had an overall agreement of 49.6% and Kappa(free) of 0.40. Conclusion This study suggests a marked inter-rater unreliability in prehospital patient scoring and coding even in a relatively uniform group of practitioners working in a highly focused environment. This indicates that the scores and codes should be specifically designed or adapted for prehospital use, and the users should be provided with clear and thorough instructions on how to use them.Peer reviewe

    Occupational Histories of Cancer Patients in a Canadian Cancer Treatment Centre and the Generated Hypothesis Regarding Breast Cancer and Farming

    Get PDF
    Occupational exposures increase cancer risks. The Windsor Regional Cancer Centre in Windsor, Ontario, was the first Canadian cancer treatment center to collect the work histories of its patients, which were recorded using a computer-based questionnaire. Breast cancer cases represented the largest respondent group. The lifetime occupational histories of 299 women with newly diagnosed breast cancers were compared with those of 237 women with other cancers. Odds ratios (ORs) were calculated using logistic regression, adjusting for age, social class, and education. The OR for women £ 55 years of age with breast cancer who had ever farmed, compared with women of the same age with other cancers, was 9.05 (95% CI 1.06, 77.43). Patients’ occupational histories can help to inform understanding of cancer etiology and prevention. This effort points to a need for investigation of the possible association between breast cancer and agricultural hazards such as pesticides

    Neural Network Driven Eye Tracking Metrics and Data Visualization in Metaverse and Virtual Reality Maritime Safety Training

    Get PDF
    Understand the human brain, predict human performance, and proactively plan, strategize and act based on such information initiated a scientific multidisciplinary alliance to address modern management challenges. This paper integrates numerous advanced information technologies such as eye tracking, virtual reality and neural networks for cognitive task analysis leading to behavioral analysis on humans that perform specific activities. The technology developed and presented in this paper has been tested on a maritime safety training application for command bridge communication and procedures for collision avoidance. The technology integrates metaverse and virtual reality environments with eye tracking for the collection of behavioral data which are analyzed by a neural network to indicate the mental and physical state, attention and readiness of a seafarer to perform such a critical task. The paper demonstrates the technology architecture, data collection process, indicative results, and areas for further research

    High resolution Compton scattering as a Probe of the Fermi surface in the Iron-based superconductor LaO1xFxFeAsLaO_{1-x}F_xFeAs

    Full text link
    We have carried out first principles all-electron calculations of the (001)-projected 2D electron momentum density and the directional Compton profiles along the [100], [001] and [110] directions in the Fe-based superconductor LaOFeAs within the framework of the local density approximation. We identify Fermi surface features in the 2D electron momentum density and the directional Compton profiles, and discuss issues related to the observation of these features via Compton scattering experiments.Comment: 4 pages, 3 figure
    corecore