177 research outputs found

    The T-100-12.8 family of cogeneration steam turbines: Yesterday, today, and tomorrow

    Full text link
    The T-100-12.8 turbine and its versions, a type of cogeneration steam turbines that is among best known, unique, and most widely used ones in Russia and abroad, are considered. A list of turbine design versions and quantities in which they were produced, their technical and economic indicators, design features, schematic solutions used in different design versions, and a list of solutions available in a comprehensive portfolio offered for modernizing type T-100-12.8 turbines are presented. Information about amounts in which turbines of the last version are supplied currently and supposed to be supplied soon is given. © 2013 Pleiades Publishing, Ltd

    Experience gained at the Ural Turbine Works with retrofitting steam turbine units for thermal power stations

    Full text link
    Examples of projects on retrofitting, modernizing, and renovating steam turbine units at thermal power stations implemented with participation of the Ural Turbine Works are given. Advanced construction and layout solutions were used in implementing these projects both on the territory of Russia and abroad. © 2013 Pleiades Publishing, Ltd

    Soft elasticity in biaxial smectic and smectic-C elastomers

    Full text link
    Ideal (monodomain) smectic-AA elastomers crosslinked in the smectic-AA phase are simply uniaxial rubbers, provided deformations are small. From these materials smectic-CC elastomers are produced by a cooling through the smectic-AA to smectic-CC phase transition. At least in principle, biaxial smectic elastomers could also be produced via cooling from the smectic-AA to a biaxial smectic phase. These phase transitions, respectively from DhD_{\infty h} to C2hC_{2h} and from DhD_{\infty h} to D2hD_{2h} symmetry, spontaneously break the rotational symmetry in the smectic planes. We study the above transitions and the elasticity of the smectic-CC and biaxial phases in three different but related models: Landau-like phenomenological models as functions of the Cauchy--Saint-Laurent strain tensor for both the biaxial and the smectic-CC phases and a detailed model, including contributions from the elastic network, smectic layer compression, and smectic-CC tilt for the smectic-CC phase as a function of both strain and the cc-director. We show that the emergent phases exhibit soft elasticity characterized by the vanishing of certain elastic moduli. We analyze in some detail the role of spontaneous symmetry breaking as the origin of soft elasticity and we discuss different manifestations of softness like the absence of restoring forces under certain shears and extensional strains.Comment: 26 pages, 6 figure

    Steam turbines produced by the Ural Turbine Works for combined-cycle plants

    Full text link
    The most interesting and innovative solutions adopted in the projects of steam turbines for combined-cycle plants with capacities from 115 to 900 MW are pointed out. The development of some ideas and components from the first projects to subsequent ones is shown. © 2013 Pleiades Publishing, Ltd

    Aerodynamic investigations of ventilated brake discs.

    Get PDF
    The heat dissipation and performance of a ventilated brake disc strongly depends on the aerodynamic characteristics of the flow through the rotor passages. The aim of this investigation was to provide an improved understanding of ventilated brake rotor flow phenomena, with a view to improving heat dissipation, as well as providing a measurement data set for validation of computational fluid dynamics methods. The flow fields at the exit of four different brake rotor geometries, rotated in free air, were measured using a five-hole pressure probe and a hot-wire anemometry system. The principal measurements were taken using two-component hot-wire techniques and were used to determine mean and unsteady flow characteristics at the exit of the brake rotors. Using phase-locked data processing, it was possible to reveal the spatial and temporal flow variation within individual rotor passages. The effects of disc geometry and rotational speed on the mean flow, passage turbulence intensity, and mass flow were determined. The rotor exit jet and wake flow were clearly observed as characterized by the passage geometry as well as definite regions of high and low turbulence. The aerodynamic flow characteristics were found to be reasonably independent of rotational speed but highly dependent upon rotor geometry
    corecore