234 research outputs found

    Yeasts and wine off-flavours: a technological perspective

    Get PDF
    Review article. Part of the special issue "Wine microbiology and safety: from the vineyard to the bottle (Microsafety Wine)", 19-20 Nov. 2009, ItalyIn wine production, yeasts have both beneficial and detrimental activities. Saccharomyces cerevisiae is the yeast mainly responsible for turning grape juice into wine but this species and several others may also show undesirable effects in wines. Among such effects, technologists are particularly concerned with the production of offflavours that may occur during all stages of winemaking. Typical spoiling activities include the production of ethyl acetate by apiculate yeasts before fermentation, hydrogen sulphide by S. cerevisiae during fermentation phases, acetaldehyde by film-forming yeasts during bulk storage, and volatile phenols by Dekkera bruxellensis during storage or after bottling. The occurrence of these hazards depends on the technological operations designed to obtain a given type of wine and most can be avoided by current preventive or curative measures. On the contrary, good manufacturing practices must be strengthened to deal with the problem of volatile phenol production in red wines. Appropriate monitoring of D. bruxellensis populations and quantification of 4-ethylphenol is advised during storage, particularly when oak barrels are used, and absence of viable cells must be guaranteed in bottled wines. This work, which is based on our experience at winery level, aims to provide information on appropriate technological strategies to deal with the problem of off-flavours produced by yeasts

    Regulation of pH by Carbonic Anhydrase 9 Mediates Survival of Pancreatic Cancer Cells With Activated KRAS in Response to Hypoxia.

    Get PDF
    Background & Aims Most pancreatic ductal adenocarcinomas (PDACs) express an activated form of KRAS, become hypoxic and dysplastic, and are refractory to chemo and radiation therapies. To survive in the hypoxic environment, PDAC cells upregulate enzymes and transporters involved in pH regulation, including the extracellular facing carbonic anhydrase 9 (CA9). We evaluated the effect of blocking CA9, in combination with administration of gemcitabine, in mouse models of pancreatic cancer. Methods We knocked down expression of KRAS in human (PK-8 and PK-1) PDAC cells with small hairpin RNAs. Human and mouse (KrasG12D/Pdx1-Cre/Tp53/RosaYFP) PDAC cells were incubated with inhibitors of MEK (trametinib) or extracellular signal-regulated kinase (ERK), and some cells were cultured under hypoxic conditions. We measured levels and stability of the hypoxia-inducible factor 1 subunit alpha (HIF1A), endothelial PAS domain 1 protein (EPAS1, also called HIF2A), CA9, solute carrier family 16 member 4 (SLC16A4, also called MCT4), and SLC2A1 (also called GLUT1) by immunoblot analyses. We analyzed intracellular pH (pHi) and extracellular metabolic flux. We knocked down expression of CA9 in PDAC cells, or inhibited CA9 with SLC-0111, incubated them with gemcitabine, and assessed pHi, metabolic flux, and cytotoxicity under normoxic and hypoxic conditions. Cells were also injected into either immune-compromised or immune-competent mice and growth of xenograft tumors was assessed. Tumor fragments derived from patients with PDAC were surgically ligated to the pancreas of mice and the growth of tumors was assessed. We performed tissue microarray analyses of 205 human PDAC samples to measure levels of CA9 and associated expression of genes that regulate hypoxia with outcomes of patients using the Cancer Genome Atlas database. Results Under hypoxic conditions, PDAC cells had increased levels of HIF1A and HIF2A, upregulated expression of CA9, and activated glycolysis. Knockdown of KRAS in PDAC cells, or incubation with trametinib, reduced the posttranscriptional stabilization of HIF1A and HIF2A, upregulation of CA9, pHi, and glycolysis in response to hypoxia. CA9 was expressed by 66% of PDAC samples analyzed; high expression of genes associated with metabolic adaptation to hypoxia, including CA9, correlated with significantly reduced survival times of patients. Knockdown or pharmacologic inhibition of CA9 in PDAC cells significantly reduced pHi in cells under hypoxic conditions, decreased gemcitabine-induced glycolysis, and increased their sensitivity to gemcitabine. PDAC cells with knockdown of CA9 formed smaller xenograft tumors in mice, and injection of gemcitabine inhibited tumor growth and significantly increased survival times of mice. In mice with xenograft tumors grown from human PDAC cells, oral administration of SLC-0111 and injection of gemcitabine increased intratumor acidosis and increased cell death. These tumors, and tumors grown from PDAC patient-derived tumor fragments, grew more slowly than xenograft tumors in mice given control agents, resulting in longer survival times. In KrasG12D/Pdx1-Cre/Tp53/RosaYFP genetically modified mice, oral administration of SLC-0111 and injection of gemcitabine reduced numbers of B cells in tumors. Conclusions In response to hypoxia, PDAC cells that express activated KRAS increase expression of CA9, via stabilization of HIF1A and HIF2A, to regulate pH and glycolysis. Disruption of this pathway slows growth of PDAC xenograft tumors in mice and might be developed for treatment of pancreatic cancer

    Parallel evolution of the make–accumulate–consume strategy in Saccharomyces and Dekkera yeasts

    Get PDF
    Saccharomyces yeasts degrade sugars to two-carbon components, in particular ethanol, even in the presence of excess oxygen. This characteristic is called the Crabtree effect and is the background for the 'make–accumulate–consume' life strategy, which in natural habitats helps Saccharomyces yeasts to out-compete other microorganisms. A global promoter rewiring in the Saccharomyces cerevisiae lineage, which occurred around 100 mya, was one of the main molecular events providing the background for evolution of this strategy. Here we show that the Dekkera bruxellensis lineage, which separated from the Saccharomyces yeasts more than 200 mya, also efficiently makes, accumulates and consumes ethanol and acetic acid. Analysis of promoter sequences indicates that both lineages independently underwent a massive loss of a specific cis-regulatory element from dozens of genes associated with respiration, and we show that also in D. bruxellensis this promoter rewiring contributes to the observed Crabtree effect

    Treatment with a BH3 mimetic overcomes the resistance of latency III EBV (+) cells to p53-mediated apoptosis

    Get PDF
    P53 inactivation is often observed in Burkitt's lymphoma (BL) cells due to mutations in the p53 gene or overexpression of its negative regulator, murine double minute-2 (MDM2). This event is now considered an essential part of the oncogenic process. Epstein–Barr virus (EBV) is strongly associated with BL and is a cofactor in its development. We previously showed that nutlin-3, an antagonist of MDM2, activates the p53 pathway in BL cell lines harboring wild-type p53. However, nutlin-3 strongly induced apoptosis in EBV (−) or latency I EBV (+) cells, whereas latency III EBV (+) cells were much more resistant. We show here that this resistance to apoptosis is also observed in latency III EBV (+) lymphoblastoid cell lines. We also show that, in latency III EBV (+) cells, B-cell lymphona 2 (Bcl-2) is selectively overproduced and interacts with Bcl-2-associated X protein (Bax), preventing its activation. The treatment of these cells with the Bcl-2-homology domain 3 mimetic ABT-737 disrupts Bax/Bcl-2 interaction and allows Bax activation by nutlin-3. Furthermore, treatment with these two compounds strongly induces apoptosis. Thus, a combination of Mdm2 and Bcl-2 inhibitors might be a useful anti-cancer strategy for diseases linked to EBV infection

    Complexity and dynamics of the winemaking bacterial communities in berries, musts, and wines from apulian grape cultivars through time and space

    Get PDF
    Currently, there is very little information available regarding the microbiome associated with the wine production chain. Here, we used an amplicon sequencing approach based on high-throughput sequencing (HTS) to obtain a comprehensive assessment of the bacterial community associated with the production of three Apulian red wines, from grape to final product. The relationships among grape variety, the microbial community, and fermentation was investigated. Moreover, the winery microbiota was evaluated compared to the autochthonous species in vineyards that persist until the end of the winemaking process. The analysis highlighted the remarkable dynamics within the microbial communities during fermentation. A common microbial core shared among the examined wine varieties was observed, and the unique taxonomic signature of each wine appellation was revealed. New species belonging to the genus Halomonas were also reported. This study demonstrates the potential of this metagenomic approach, supported by optimized protocols, for identifying the biodiversity of the wine supply chain. The developed experimental pipeline offers new prospects for other research fields in which a comprehensive view of microbial community complexity and dynamics is desirable.Peer ReviewedPostprint (published version

    Impact of volatile phenols and their precursors on wine quality and control measures of Brettanomyces/Dekkera yeasts

    Get PDF
    Volatile phenols are aromatic compounds and one of the key molecules responsible for olfactory defects in wine. The yeast genus Brettanomyces is the only major microorganism that has the ability to covert hydroxycinnamic acids into important levels of these compounds, especially 4-ethylphenol and 4-ethylguaiacol, in red wine. When 4-ethylphenols reach concentrations greater than the sensory threshold, all wine’s organoleptic characteristics might be influenced or damaged. The aim of this literature review is to provide a better understanding of the physicochemical, biochemical, and metabolic factors that are related to the levels of p-coumaric acid and volatile phenols in wine. Then, this work summarizes the different methods used for controlling the presence of Brettanomyces in wine and the production of ethylphenols

    Finding Common Ground When Experts Disagree: Robust Portfolio Decision Analysis

    Full text link
    corecore