162 research outputs found

    Development of a TB vaccine trial site in Africa and lessons from the Ebola experience

    Get PDF
    Tuberculosis is the deadliest infection of our time. In contrast, about 11,000 people died of Ebola between 2014 and 2016. Despite this manifest difference in mortality, there is now a vaccine licensed in the United States and by the European Medicines Agency, with up to 100% efficacy against Ebola. The developments that led to the trialing of the Ebola vaccine were historic and unprecedented. The single licensed TB vaccine (BCG) has limited efficacy. There is a dire need for a more efficacious TB vaccine. To deploy such vaccines, trials are needed in sites that combine high disease incidence and research infrastructure. We describe our twelve-year experience building a TB vaccine trial site in contrast to the process in the recent Ebola outbreak. There are additional differences. Relative to the Ebola pipeline, TB vaccines have fewer trials and a paucity of government and industry led trials. While pathogens have varying levels of difficulty in the development of new vaccine candidates, there yet appears to be greater interest in funding and coordinating Ebola interventions. TB is a global threat that requires similar concerted effort for elimination

    The negotiation and co-construction of meaning and understanding within a postgraduate online learning community

    Get PDF
    There is an increasing development of courses and course components taught through teaching and learning dialogues online yet there is little secure knowledge regarding the educational quality and outcomes of these dialogues. Drawing on contemporary socio-cultural research, this paper adapts a well-established analytical framework (see Mercer, 1995) that has been developed to understand face to face educational dialogues to the new context of asynchronous electronic conferencing. The work reported is derived from an in-depth case study of a tutorial group of 11 students enrolled on a course within the Open University's MA in Open and Distance Learning. The course was taught on-line to an international cohort of students from wide-ranging academic backgrounds. The analyses of electronic conference archives presented here focus on understanding the students’ on-line collaborative work and the ways in which they constructed meaning, negotiated shared understanding and supported each other in the process of learning at a distance. The implications of the findings for educational practice are considered

    COMPASS identifies T-cell subsets correlated with clinical outcomes.

    Get PDF
    Advances in flow cytometry and other single-cell technologies have enabled high-dimensional, high-throughput measurements of individual cells as well as the interrogation of cell population heterogeneity. However, in many instances, computational tools to analyze the wealth of data generated by these technologies are lacking. Here, we present a computational framework for unbiased combinatorial polyfunctionality analysis of antigen-specific T-cell subsets (COMPASS). COMPASS uses a Bayesian hierarchical framework to model all observed cell subsets and select those most likely to have antigen-specific responses. Cell-subset responses are quantified by posterior probabilities, and human subject-level responses are quantified by two summary statistics that describe the quality of an individual's polyfunctional response and can be correlated directly with clinical outcome. Using three clinical data sets of cytokine production, we demonstrate how COMPASS improves characterization of antigen-specific T cells and reveals cellular 'correlates of protection/immunity' in the RV144 HIV vaccine efficacy trial that are missed by other methods. COMPASS is available as open-source software

    Potential of novel Mycobacterium tuberculosis infection phase-dependent antigens in the diagnosis of TB disease in a high burden setting

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Confirming tuberculosis (TB) disease in suspects in resource limited settings is challenging and calls for the development of more suitable diagnostic tools. Different <it>Mycobacterium tuberculosis (M.tb) </it>infection phase-dependent antigens may be differentially recognized in infected and diseased individuals and therefore useful as diagnostic tools for differentiating between <it>M.tb </it>infection states. In this study, we assessed the diagnostic potential of 118 different <it>M.tb </it>infection phase-dependent antigens in TB patients and household contacts (HHCs) in a high-burden setting.</p> <p>Methods</p> <p>Antigens were evaluated using the 7-day whole blood culture technique in 23 pulmonary TB patients and in 19 to 21 HHCs (total n = 101), who were recruited from a high-TB incidence community in Cape Town, South Africa. Interferon-gamma (IFN-γ) levels in culture supernatants were determined by ELISA.</p> <p>Results</p> <p>Eight classical TB vaccine candidate antigens, 51 DosR regulon encoded antigens, 23 TB reactivation antigens, 5 TB resuscitation promoting factors (rpfs), 6 starvation and 24 other stress response-associated TB antigens were evaluated in the study. The most promising antigens for ascertaining active TB were the rpfs (Rv0867c, Rv2389c, Rv2450c, Rv1009 and Rv1884c), with Areas under the receiver operating characteristics curves (AUCs) between 0.72 and 0.80. A combination of <it>M.tb </it>specific ESAT-6/CFP-10 fusion protein, Rv2624c and Rv0867c accurately predicted 73% of the TB patients and 80% of the non-TB cases after cross validation.</p> <p>Conclusions</p> <p>IFN-γ responses to TB rpfs show promise as TB diagnostic candidates and should be evaluated further for discrimination between <it>M.tb </it>infection states.</p

    Modulation of the silica sol-gel composition for the promotion of direct electron transfer to encapsulated cytochrome

    Get PDF
    The direct electron transfer between indium-tin oxide electrodes (ITO) and cytochrome c encapsulated in different sol-gel silica networks was studied. Cyt c@silica modified electrodes were synthesized by a two-step encapsulation method mixing a phosphate buffer solution with dissolved cytochrome c and a silica sol prepared by the alcohol-free sol-gel route. These modified electrodes were characterized by cyclic voltammetry, UV-vis spectroscopy, and in situ UV-vis spectroelectrochemistry. The electrochemical response of encapsulated protein is influenced by the terminal groups of the silica pores. Cyt c does not present electrochemical response in conventional silica (hydroxyl terminated) or phenyl terminated silica. Direct electron transfer to encapsulated cytochrome c and ITO electrodes only takes place when the protein is encapsulated in methyl modified silica networks.We gratefully acknowledge Jesus Yanez and Prof. Jose Miguel Martin-Martinez from the Laboratory of Adhesion and Adhesives (University of Alicante) for their assistance in the measurements of contact angle. We also acknowledge the Financial support from the Spanish Ministerio de Economia y Competitividad and FEDER y Ciencia (MAT2010-15273), Generalitat Valenciana (PROMETEO2013/038), and the Fundacion Ramon Areces (CIVP16A1821). Alonso Gamero-Quijano is grateful to Generalitat Valenciana (Santiago Grisolia Program) for the funding of his research fellowship.Gamero-Quijano, A.; Huerta, F.; Morallón, E.; Montilla, F. (2014). Modulation of the silica sol-gel composition for the promotion of direct electron transfer to encapsulated cytochrome. Langmuir. 30(34):10531-10538. https://doi.org/10.1021/la5023517S1053110538303

    High-Resolution Electron Microscopy of Semiconductor Heterostructures and Nanostructures

    Get PDF
    This chapter briefly describes the fundamentals of high-resolution electron microscopy techniques. In particular, the Peak Pairs approach for strain mapping with atomic column resolution, and a quantitative procedure to extract atomic column compositional information from Z-contrast high-resolution images are presented. It also reviews the structural, compositional, and strain results obtained by conventional and advanced transmission electron microscopy methods on a number of III–V semiconductor nanostructures and heterostructures

    Fusion of the Mycobacterium tuberculosis Antigen 85A to an Oligomerization Domain Enhances Its Immunogenicity in Both Mice and Non-Human Primates

    Get PDF
    To prevent important infectious diseases such as tuberculosis, malaria and HIV, vaccines inducing greater T cell responses are required. In this study, we investigated whether fusion of the M. tuberculosis antigen 85A to recently described adjuvant IMX313, a hybrid avian C4bp oligomerization domain, could increase T cell responses in pre-clinical vaccine model species. In mice, the fused antigen 85A showed consistent increases in CD4+ and CD8+ T cell responses after DNA and MVA vaccination. In rhesus macaques, higher IFN-γ responses were observed in animals vaccinated with MVA-Ag85A IMX313 after both primary and secondary immunizations. In both animal models, fusion to IMX313 induced a quantitative enhancement in the response without altering its quality: multifunctional cytokines were uniformly increased and differentiation into effector and memory T cell subsets was augmented rather than skewed. An extensive in vivo characterization suggests that IMX313 improves the initiation of immune responses as an increase in antigen 85A specific cells was observed as early as day 3 after vaccination. This report demonstrates that antigen multimerization using IMX313 is a simple and effective cross-species method to improve vaccine immunogenicity with potentially broad applicability

    State of the art of immunoassay methods for B-type natriuretic peptides: An update

    Get PDF
    The aim of this review article is to give an update on the state of the art of the immunoassay methods for the measurement of B-type natriuretic peptide (BNP) and its related peptides. Using chromatographic procedures, several studies reported an increasing number of circulating peptides related to BNP in human plasma of patients with heart failure. These peptides may have reduced or even no biological activity. Furthermore, other studies have suggested that, using immunoassays that are considered specific for BNP, the precursor of the peptide hormone, proBNP, constitutes a major portion of the peptide measured in plasma of patients with heart failure. Because BNP immunoassay methods show large (up to 50%) systematic differences in values, the use of identical decision values for all immunoassay methods, as suggested by the most recent international guidelines, seems unreasonable. Since proBNP significantly cross-reacts with all commercial immunoassay methods considered specific for BNP, manufacturers should test and clearly declare the degree of cross-reactivity of glycosylated and non-glycosylated proBNP in their BNP immunoassay methods. Clinicians should take into account that there are large systematic differences between methods when they compare results from different laboratories that use different BNP immunoassays. On the other hand, clinical laboratories should take part in external quality assessment (EQA) programs to evaluate the bias of their method in comparison to other BNP methods. Finally, the authors believe that the development of more specific methods for the active peptide, BNP1–32, should reduce the systematic differences between methods and result in better harmonization of results
    corecore