282 research outputs found
Drug treatment of malaria infections can reduce levels of protection transferred to offspring via maternal immunity
Maternally transferred immunity can have a fundamental effect on the ability of offspring to deal with infection. However, levels of antibodies in adults can vary both quantitatively and qualitatively between individuals and during the course of infection. How infection dynamics and their modification by drug treatment might affect the protection transferred to offspring remains poorly understood. Using the rodent malaria parasite Plasmodium chabaudi, we demonstrate that curing dams part way through infection prior to pregnancy can alter their immune response, with major consequences for offspring health and survival. In untreated maternal infections, maternally transferred protection suppressed parasitaemia and reduced pup mortality by 75 per cent compared with pups from naĂŻve dams. However, when dams were treated with anti-malarial drugs, pups received fewer maternal antibodies, parasitaemia was only marginally suppressed, and mortality risk was 25 per cent higher than for pups from dams with full infections. We observed the same qualitative patterns across three different host strains and two parasite genotypes. This study reveals the role that within-host infection dynamics play in the fitness consequences of maternally transferred immunity. Furthermore, it highlights a potential trade-off between the health of mothers and offspring suggesting that anti-parasite treatment may significantly affect the outcome of infection in newborns
Urban Park Development and Pediatric Obesity Rates: A Quasi-Experiment Using Electronic Health Record Data
INTRODUCTION:
Childhood obesity affects ~20% of children in the United States. Environmental influences, such as parks, are linked with increased physical activity (PA).
OBJECTIVE:
To examine whether changes in Body Mass Index (BMI) z-score were associated with construction of a new park.
METHODS:
A quasi-experimental design was used to determine whether living in proximity of a park was associated with a reduction in BMI z-score. Children were selected from health clinics within an 11 mile radius of the park. A repeated-measure ANOVA was employed for analysis of the relationship between exposure (new park) and BMI z-score.
RESULTS:
Participants were 1443 (median age 10.3 range (2-17.9 years), BMI: z-score 0.84 ± 1.09) African American (77.4%) adolescents. Change in BMI z-score was not statistically different for children living at different distances from the park after controlling for age, gender, race, ethnicity, or payer type (p = 0.4482). We did observe a small 0.03 increase in BMI z-score from pre- to post-park (p = 0.0007). There was a significant positive association between child's baseline age and BMI z-score (p < 0.001).
CONCLUSIONS:
This study found proximity to a park was not associated with reductions in BMI z-score. Additional efforts to understand the complex relationship between park proximity, access, and PA are warranted
Recommended from our members
Hydrogen Macro System Model User Guide, Version 1.2.1
The Hydrogen Macro System Model (MSM) is a simulation tool that links existing and emerging hydrogen-related models to perform rapid, cross-cutting analysis. It allows analysis of the economics, primary energy-source requirements, and emissions of hydrogen production and delivery pathways
Recommended from our members
Quantify uncertain emergency search techniques (QUEST) -- Theory and user`s guide
As recent world events show, criminal and terrorist access to nuclear materials is a growing national concern. The national laboratories are taking the lead in developing technologies to counter these potential threats to the national security. Sandia National laboratories, with support from Pacific Northwest National Laboratory and the Bechtel Nevada, Remote Sensing Laboratory, has developed QUEST (a model to Quantify Uncertain Emergency Search Techniques), to enhance the performance of organizations in the search for lost or stolen nuclear material. In addition, QUEST supports a wide range of other applications, such as environmental monitoring, nuclear facilities inspections, and searcher training. QUEST simulates the search for nuclear materials and calculates detector response for various source types and locations. The probability of detecting a radioactive source during a search is a function of many different variables, including source type, search location and structure geometry (including shielding), search dynamics (path and speed), and detector type and size. Through calculation of dynamic detector response, QUEST makes possible quantitative comparisons of various sensor technologies and search patterns. The QUEST model can be used as a tool to examine the impact of new detector technologies, explore alternative search concepts, and provide interactive search/inspector training
Dynamic weakening of serpentinite gouges and bare surfaces at seismic slip rates
To investigate differences in the frictional behavior between initially bare rock surfaces of serpentinite and powdered serpentinite (âgougeâ) at subseismic to seismic slip rates, we conducted single-velocity step and multiple-velocity step friction experiments on an antigorite-rich and lizardite-rich serpentinite at slip rates (V) from 0.003 m/s to 6.5 m/s, sliding displacements up to 1.6 m, and normal stresses (Ïn) up to 22 MPa for gouge and 97 MPa for bare surfaces. Nominal steady state friction values (ÎŒnss) in gouge at V = 1 m/s are larger than in bare surfaces for all Ïn tested and demonstrate a strong Ïn dependence; ÎŒnss decreased from 0.51 at 4.0 MPa to 0.39 at 22.4 MPa. Conversely, ÎŒnss values for bare surfaces remained âŒ0.1 with increasing Ïn and V. Additionally, the velocity at the onset of frictional weakening and the amount of slip prior to weakening were orders of magnitude larger in gouge than in bare surfaces. Extrapolation of the normal stress dependence for ÎŒnss suggests that the behavior of antigorite gouge approaches that of bare surfaces at Ïn â„ 60 MPa. X-ray diffraction revealed dehydration reaction products in samples that frictionally weakened. Microstructural analysis revealed highly localized slip zones with melt-like textures in some cases gouge experiments and in all bare surfaces experiments for V â„ 1 m/s. One-dimensional thermal modeling indicates that flash heating causes frictional weakening in both bare surfaces and gouge. Friction values for gouge decrease at higher velocities and after longer displacements than bare surfaces because strain is more distributed. Key Points Gouge friction approaches that of bare surfaces at high normal stress Dehydration reactions and bulk melting in serpentinite in < 1 m of slip Flash heating causes dynamic frictional weakening in gouge and bare surface
Towards Practical Runtime Verification and Validation of Self-Adaptive Software Systems
International audienceSoftware validation and verification (V&V) ensures that software products satisfy user requirements and meet their expected quality attributes throughout their lifecycle. While high levels of adaptation and autonomy provide new ways for software systems to operate in highly dynamic environments, developing certifiable V&V methods for guaranteeing the achievement of self-adaptive software goals is one of the major challenges facing the entire research field. In this chapter we (i) analyze fundamental challenges and concerns for the development of V&V methods and techniques that provide certifiable trust in self-adaptive and self-managing systems; and (ii) present a proposal for including V&V operations explicitly in feedback loops for ensuring the achievement of software self-adaptation goals. Both of these contributions provide valuable starting points for V&V researchers to help advance this field
RECOVER: An Automated Cloud-Based Decision Support System for Post-fire Rehabilitation Planning
RECOVER is a site-specific decision support system that automatically brings together in a single analysis environment the information necessary for post-fire rehabilitation decision-making. After a major wildfire, law requires that the federal land management agencies certify a comprehensive plan for public safety, burned area stabilization, resource protection, and site recovery. These burned area emergency response (BAER) plans are a crucial part of our national response to wildfire disasters and depend heavily on data acquired from a variety of sources. Final plans are due within 21 days of control of a major wildfire and become the guiding document for managing the activities and budgets for all subsequent remediation efforts. There are few instances in the federal government where plans of such wide-ranging scope and importance are assembled on such short notice and translated into action more quickly. RECOVER has been designed in close collaboration with our agency partners and directly addresses their high-priority decision-making requirements. In response to a fire detection event, RECOVER uses the rapid resource allocation capabilities of cloud computing to automatically collect Earth observational data, derived decision products, and historic biophysical data so that when the fire is contained, BAER teams will have a complete and ready-to-use RECOVER dataset and GIS analysis environment customized for the target wildfire. Initial studies suggest that RECOVER can transform this information-intensive process by reducing from days to a matter of minutes the time required to assemble and deliver crucial wildfire-related data
Artificial immune systems
The biological immune system is a robust, complex, adaptive system that defends the body from foreign pathogens. It is able to categorize all cells (or molecules) within the body as self or nonself substances. It does this with the help of a distributed task force that has the intelligence to take action from a local and also a global perspective using its network of chemical messengers for communication. There are two major branches of the immune system. The innate immune system is an unchanging mechanism that detects and destroys certain invading organisms, whilst the adaptive immune system responds to previously unknown foreign cells and builds a response to them that can remain in the body over a long period of time. This remarkable information processing biological system has caught the attention of computer science in recent years
Evaluation Studies of a 800W Solid Oxide-Based Fuel Cells Stack for Electrical Power in Aviation
As both NASA and the aeronautics industry recognize the need for higher fuel efficiency and lower carbon emissions in both commercial airline and private aviation applications, development of all-electric or hybrid electric aircraft have garnered renewed interest in the aviation community. For the particular example of the hybrid-electric option, the solid oxide fuel cell (SOFC) is an attractive option for the power source, due to its potential to utilize aviation fuels thereby having minimal impact to aviation infrastructure. SOFC stack performance depends upon many factors, one of the most important is the way the oxidant and fuel gases are delivered to the fuel cells. System modeling of various aircraft configurations for FUELEAP (Fostering Ultra-Efficient, Low-Emitting Aviation Power) point to the need to operate SOFC stacks at high current densities. This creates challenges in the thermal profile of the stacks with potential to create large thermal gradients and hot spots. This study investigates two types of commercial solid oxide fuel cell stacks, the cross flow and co-flow gas designs, both convectively cooled with cathode air. High fuel utilization factors were also employed under varying electrical loads expected from the demands of flight. In addition, performance, range of operation and endurance were investigated under conditions of high current loads and thermal cycling. Evaluations include the study of gas kinetic using electrochemical spectroscopy. Testing took place at the facilities of NASA Glenn using a commercial test system (FuelCon AG, Magdeburg Germany). These studies are crucial to the Glenn Research Center's ability to conduct research, evaluation and development of the next-generation SOFC based stacks for cutting-edge energy technologies for aerospace applications. This study supports NASA's Convergent Aeronautics Solutions' (CAS) FUELEAP project
The relevance of model-driven engineering thirty years from now
International audienceAlthough model-driven engineering (MDE) is now an established approach for developing complex software systems, it has not been universally adopted by the software industry. In order to better understand the reasons for this, as well as to identify future opportunities for MDE, we carried out a week-long design thinking experiment with 15 MDE experts. Participants were facilitated to identify the biggest problems with current MDE technologies, to identify grand challenges for society in the near future, and to identify ways that MDE could help to address these challenges. The outcome is a reflection of the current strengths of MDE, an outlook of the most pressing challenges for society at large over the next three decades, and an analysis of key future MDE research opportunities
- âŠ