60 research outputs found

    Hereditary hydrocephalus internus in a laboratory strain of golden hamsters (Mesocricetus auratus)

    Get PDF
    Golden hamsters of one common laboratory strain had a high incidence of hydrocephalus internus. When a severity score of hydrocephalus was used, a major autosomal recessive locus could be identified. However, when a binary score (hydrocephalus, no hydrocephalus) was used, no such major locus could be detected and results of test matings were not consistent with Mendelian inheritance. Golden hamsters with severe forms of hydrocephalus had a dorsally compressed and ventrally intact hippocampus. Implications for the behavior and well-being of affected hamsters are unknown but researchers using this strain should be aware of the likely presence of hydrocephalu

    Frameshift Variant in MFSD12 Explains the Mushroom Coat Color Dilution in Shetland Ponies

    Get PDF
    Mushroom is a unique coat color phenotype in Shetland Ponies characterized by the dilution of the chestnut coat color to a sepia tone and is hypothesized to be a recessive trait. A genome wide association study (GWAS), utilizing the Affymetrix 670K array (MNEc670k) and a single locus mixed linear model analysis (EMMAX), identified a locus on ECA7 for further investigation (Pcorrected = 2.08 × 10−10). This locus contained a 3 Mb run of homozygosity in the 12 mushroom ponies tested. Analysis of high throughput Illumina sequencing data from one mushroom Shetland pony compared to 87 genomes from horses of various breeds, uncovered a frameshift variant, p.Asp201fs, in the MFSD12 gene encoding the major facilitator superfamily domain containing 12 protein. This variant was perfectly concordant with phenotype in 96 Shetland Ponies (P = 1.15 × 10−22), was identified in the closely related Miniature Horse for which the mushroom phenotype is suspected to occur (fmu = 0.02), and was absent in 252 individuals from seven additional breeds not reported to have the mushroom phenotype. MFSD12 is highly expressed in melanocytes and variants in this gene in humans, mice, and dogs impact pigmentation. Given the role of MFSD12 in melanogenesis, we propose that p.Asp201fs is causal for the dilution observed in mushroom ponies

    International Veterinary Epilepsy Task Force consensus report on epilepsy definition, classification and terminology in companion animals

    Get PDF
    Dogs with epilepsy are among the commonest neurological patients in veterinary practice and therefore have historically attracted much attention with regard to definitions, clinical approach and management. A number of classification proposals for canine epilepsy have been published during the years reflecting always in parts the current proposals coming from the human epilepsy organisation the International League Against Epilepsy (ILAE). It has however not been possible to gain agreed consensus, “a common language”, for the classification and terminology used between veterinary and human neurologists and neuroscientists, practitioners, neuropharmacologists and neuropathologists. This has led to an unfortunate situation where different veterinary publications and textbook chapters on epilepsy merely reflect individual author preferences with respect to terminology, which can be confusing to the readers and influence the definition and diagnosis of epilepsy in first line practice and research studies. In this document the International Veterinary Epilepsy Task Force (IVETF) discusses current understanding of canine epilepsy and presents our 2015 proposal for terminology and classification of epilepsy and epileptic seizures. We propose a classification system which reflects new thoughts from the human ILAE but also roots in former well accepted terminology. We think that this classification system can be used by all stakeholders

    Congenital Sensorineural Deafness in Australian Stumpy-Tail Cattle Dogs Is an Autosomal Recessive Trait That Maps to CFA10

    Get PDF
    Congenital sensorineural deafness is an inherited condition found in many dog breeds, including Australian Stumpy-tail Cattle Dogs (ASCD). This deafness is evident in young pups and may affect one ear (unilateral) or both ears (bilateral). The genetic locus/loci involved is unknown for all dog breeds. The aims of this study were to determine incidence, inheritance mechanism, and possible association of congenital sensorineural deafness with coat colour in ASCD and to identify the genetic locus underpinning this disease.A total of 315 ASCD were tested for sensorineural deafness using the brain stem auditory evoked response (BAER) test. Disease penetrance was estimated directly, using the ratio of unilaterally to bilaterally deaf dogs, and segregation analysis was performed using Mendel. A complete genome screen was undertaken using 325 microsatellites spread throughout the genome, on a pedigree of 50 BAER tested ASCD in which deafness was segregating. Fifty-six dogs (17.8%) were deaf, with 17 bilaterally and 39 unilaterally deaf. Unilaterally deaf dogs showed no significant left/right bias (p = 0.19) and no significant difference was observed in frequencies between the sexes (p = 0.18). Penetrance of deafness was estimated as 0.72. Testing the association of red/blue coat colour and deafness without accounting for pedigree structure showed that red dogs were 1.8 times more likely to be deaf (p = 0.045). The within family association between red/blue coat colour and deafness was strongly significant (p = 0.00036), with red coat colour segregating more frequently with deafness (COR = 0.48). The relationship between deafness and coat speckling approached significance (p = 0.07), with the lack of statistical significance possibly due to only four families co-segregating for both deafness and speckling. The deafness phenotype was mapped to CFA10 (maximum linkage peak on CFA10 -log10 p-value = 3.64), as was both coat colour and speckling. Fine mapping was then performed on 45 of these 50 dogs and a further 48 dogs (n = 93). Sequencing candidate gene Sox10 in 6 hearing ASCD, 2 unilaterally deaf ASCD and 2 bilaterally deaf ASCD did not reveal any disease-associated mutations.Deafness in ASCD is an incompletely penetrant autosomal recessive inherited disease that maps to CFA10

    The walnut (Juglans regia) genome sequence reveals diversity in genes coding for the biosynthesis of non-structural polyphenols

    Get PDF
    The Persian walnut (Juglans regia L.), a diploid species native to the mountainous regions of Central Asia, is the major walnut species cultivated for nut production and is one of the most widespread tree nut species in the world. The high nutritional value of J. regia nuts is associated with a rich array of polyphenolic compounds, whose complete biosynthetic pathways are still unknown. A J. regia genome sequence was obtained from the cultivar ‘Chandler’ to discover target genes and additional unknown genes. The 667-Mbp genome was assembled using two different methods (SOAPdenovo2 and MaSuRCA), with an N50 scaffold size of 464 955 bp (based on a genome size of 606 Mbp), 221 640 contigs and a GC content of 37%. Annotation with MAKER-P and other genomic resources yielded 32 498 gene models. Previous studies in walnut relying on tissue-specific methods have only identified a single polyphenol oxidase (PPO) gene (JrPPO1). Enabled by the J. regia genome sequence, a second homolog of PPO (JrPPO2) was discovered. In addition, about 130 genes in the large gallate 1-β-glucosyltransferase (GGT) superfamily were detected. Specifically, two genes, JrGGT1 and JrGGT2, were significantly homologous to the GGT from Quercus robur (QrGGT), which is involved in the synthesis of 1-O-galloyl-β-d-glucose, a precursor for the synthesis of hydrolysable tannins. The reference genome for J. regia provides meaningful insight into the complex pathways required for the synthesis of polyphenols. The walnut genome sequence provides important tools and methods to accelerate breeding and to facilitate the genetic dissection of complex traitsWe would especially like to thank Gale McGranahan, Emeritus Professor of the Department of Plant Sciences at UC Davis, for providing tissue culture materials for the transcriptome sequencing and assembly and the California Walnut Board for supporting this study. We gratefully acknowledge the editor and two anonymous referees for their constructive criticism and helpful comments that improved the manuscriptPeer reviewe

    Sire Evaluation by Only Extended Partial Milk and Fat Records

    Get PDF
    The standard of comparison for dairy production records is the 305-day lactation, and much research has been directed to estimating 305-day milk and fat records from incomplete or in-progress records. This study was to determine the effect of several methods of extending incomplete records on sire evaluation. Complete 305-day milk and fat records of first lactations of 73,724 daughters of 1,362 artificial insemination Holstein sires processed at the New York Dairy Records Processing Laboratory were used to compute sire proofs for yield of milk and fat. Partial records of two lengths (60 to 80 days and 130 to 160 days) on the same daughters were extended by three methods, and sire proofs were computed from these six sets of extended records. Correlations between sire proofs with complete records only and sire proofs with only extended incomplete records were .93 or .94 (for milk proofs) when the length of the part record was between 130 and 160 days, regardless of the method of extension. Correlations were less (.66 to .81 for milk proofs), as expected, when the length of the part record was between 60 and 80 days
    • …
    corecore