4,158 research outputs found

    An SIS-based sideband-separating heterodyne mixer optimized for the 600 to 720 GHz band

    Get PDF
    The Atacama Large Millimeter Array (ALMA) is the largest radio astronomical enterprise ever proposed. When completed, each of its 64 constituting radio-telescopes will be able to hold 10 heterodyne receivers covering the spectroscopic windows allowed by the atmospheric transmission at the construction site, the altiplanos of the northern Chilean Andes. In contrast to the sideband-separating (2SB) receivers being developed at low frequencies, double-side-band (DSB) receivers are being developed for the highest two spectroscopic windows (bands 9 and 10). Despite of the well known advantages of 2SB mixers over their DSB counterparts, they have not been implemented at the highest-frequency bands as the involved dimensions for some of the radio frequency components are prohibitory small. However, the current state-of-the-art micromachining technology has proved that the structures necessary for this development are attainable. Here we report the design, modeling, realization, and characterization of a 2SB mixer for band 9 of ALMA (600 to 720 GHz). At the heart of the mixer, two superconductor-insulator-superconductor (SIS) junctions are used as mixing elements. The constructed instrument presents an excellent performance as shown by two important figures of merit: noise temperature of the system and side band ratio, both of them within ALMA specifications

    Best practice in undertaking and reporting health technology assessments : Working Group 4 report

    Get PDF
    [Executive Summary] The aim of Working Group 4 has been to develop and disseminate best practice in undertaking and reporting assessments, and to identify needs for methodologic development. Health technology assessment (HTA) is a multidisciplinary activity that systematically examines the technical performance, safety, clinical efficacy, and effectiveness, cost, costeffectiveness, organizational implications, social consequences, legal, and ethical considerations of the application of a health technology (18). HTA activity has been continuously increasing over the last few years. Numerous HTA agencies and other institutions (termed in this report “HTA doers”) across Europe are producing an important and growing amount of HTA information. The objectives of HTA vary considerably between HTA agencies and other actors, from a strictly political decision making–oriented approach regarding advice on market licensure, coverage in benefits catalogue, or investment planning to information directed to providers or to the public. Although there seems to be broad agreement on the general elements that belong to the HTA process, and although HTA doers in Europe use similar principles (41), this is often difficult to see because of differences in language and terminology. In addition, the reporting of the findings from the assessments differs considerably. This reduces comparability and makes it difficult for those undertaking HTA assessments to integrate previous findings from other HTA doers in a subsequent evaluation of the same technology. Transparent and clear reporting is an important step toward disseminating the findings of a HTA; thus, standards that ensure high quality reporting may contribute to a wider dissemination of results. The EUR-ASSESS methodologic subgroup already proposed a framework for conducting and reporting HTA (18), which served as the basis for the current working group. New developments in the last 5 years necessitate revisiting that framework and providing a solid structure for future updates. Giving due attention to these methodologic developments, this report describes the current “best practice” in both undertaking and reporting HTA and identifies the needs for methodologic development. It concludes with specific recommendations and tools for implementing them, e.g., by providing the structure for English-language scientific summary reports and a checklist to assess the methodologic and reporting quality of HTA reports

    Multi-model simulations of the impact of international shipping on Atmospheric Chemistry and Climate in 2000 and 2030

    Get PDF
    The global impact of shipping on atmospheric chemistry and radiative forcing, as well as the associated uncertainties, have been quantified using an ensemble of ten state-of-the-art atmospheric chemistry models and a predefined set of emission data. The analysis is performed for present-day conditions ( year 2000) and for two future ship emission scenarios. In one scenario ship emissions stabilize at 2000 levels; in the other ship emissions increase with a constant annual growth rate of 2.2% up to 2030 ( termed the "Constant Growth Scenario" (CGS)). Most other anthropogenic emissions follow the IPCC ( Intergovernmental Panel on Climate Change) SRES ( Special Report on Emission Scenarios) A2 scenario, while biomass burning and natural emissions remain at year 2000 levels. An intercomparison of the model results with observations over the Northern Hemisphere (25 degrees - 60 degrees N) oceanic regions in the lower troposphere showed that the models are capable to reproduce ozone (O-3) and nitrogen oxides (NOx= NO+ NO2) reasonably well, whereas sulphur dioxide (SO2) in the marine boundary layer is significantly underestimated. The most pronounced changes in annual mean tropospheric NO2 and sulphate columns are simulated over the Baltic and North Seas. Other significant changes occur over the North Atlantic, the Gulf of Mexico and along the main shipping lane from Europe to Asia, across the Red and Arabian Seas. Maximum contributions from shipping to annual mean near-surface O-3 are found over the North Atlantic ( 5 - 6 ppbv in 2000; up to 8 ppbv in 2030). Ship contributions to tropospheric O3 columns over the North Atlantic and Indian Oceans reach 1 DU in 2000 and up to 1.8 DU in 2030. Tropospheric O-3 forcings due to shipping are 9.8 +/- 2.0 mW/m(2) in 2000 and 13.6 +/- 2.3 mW/m(2) in 2030. Whilst increasing O-3, ship NOx simultaneously enhances hydroxyl radicals over the remote ocean, reducing the global methane lifetime by 0.13 yr in 2000, and by up to 0.17 yr in 2030, introducing a negative radiative forcing. The models show future increases in NOx and O-3 burden which scale almost linearly with increases in NOx emission totals. Increasing emissions from shipping would significantly counteract the benefits derived from reducing SO2 emissions from all other anthropogenic sources under the A2 scenario over the continents, for example in Europe. Globally, shipping contributes 3% to increases in O-3 burden between 2000 and 2030, and 4.5% to increases in sulphate under A2/CGS. However, if future ground based emissions follow a more stringent scenario, the relative importance of ship emissions will increase. Inter-model differences in the simulated O-3 contributions from ships are significantly smaller than estimated uncertainties stemming from the ship emission inventory, mainly the ship emission totals, the distribution of the emissions over the globe, and the neglect of ship plume dispersion

    Fourier transform and the Verlinde formula for the quantum double of a finite group

    Full text link
    A Fourier transform S is defined for the quantum double D(G) of a finite group G. Acting on characters of D(G), S and the central ribbon element of D(G) generate a unitary matrix representation of the group SL(2,Z). The characters form a ring over the integers under both the algebra multiplication and its dual, with the latter encoding the fusion rules of D(G). The Fourier transform relates the two ring structures. We use this to give a particularly short proof of the Verlinde formula for the fusion coefficients.Comment: 15 pages, small errors corrected and references added, version to appear in Journal of Physics

    Nucleotide sequence of the structural gene (pyrB) that encodes the catalytic polypeptide of aspartate transcarbamoylase of Escherichia coli.

    Get PDF
    The deoxyribonucleotide sequence of pyrB, the cistron encoding the catalytic subunit of aspartate transcarbamoylase (carbamoylphosphate: L-aspartate carbamoyltransferase, EC 2.1.3.2), has been determined. The pyrB gene encodes a polypeptide of 311 amino acid residues initiated by an NH2-terminal methionine that is not present in the catalytically active polypeptide. The DNA sequence analysis revealed the presence of an eight-amino-acid sequence beginning at Met-219 that was not detected in previous analyses of amino acid sequence. This octapeptide sequence provides an additional component of the disordered loop in the equatorial domain of the catalytic polypeptide. It had been found previously that the catalytic polypeptide is expressed from a bicistronic operon that also produces the regulatory polypeptide encoded by pyrI. A single transcriptional control region precedes the structural gene of the catalytic polypeptide and a simple 15-base-pair region separates its COOH terminus from the structural gene of the regulatory polypeptide. The chain-terminating codon of the catalytic polypeptide may contribute to the ribosomal binding site for the regulatory polypeptide and thus assist coordinate expression of the two cistrons

    PrP genotypes of captive and free-ranging Rocky Mountain elk (\u3ci\u3eCervus elaphus nelsoni\u3c/i\u3e) with chronic wasting disease

    Get PDF
    The PrP gene encodes the putative causative agent of the transmissible spongiform encephalopathies (TSEs), a heterogeneous group of fatal, neurodegenerative disorders including human Creutzfeldt–Jakob disease, bovine spongiform encephalopathy, ovine scrapie and chronic wasting disease (CWD) of North American deer and elk. Polymorphisms in the PrP gene are associated with variations in relative susceptibility, pathological lesion patterns, incubation times and clinical course of TSEs of humans, mice and sheep. Sequence analysis of the PrP gene from Rocky Mountain elk showed only one amino acid change (Met to Leu at cervid codon 132). Homozygosity for Met at the corresponding polymorphic site (Met to Val) in humans (human codon 129) predisposes exposed individuals to some forms of Creutzfeldt–Jakob disease. In this study, Rocky Mountain elk homozygous for PrP codon 132 Met were over-represented in both free-ranging and farm-raised CWD-affected elk when compared to unaffected control groups

    Adaptive Optics for Astronomy

    Full text link
    Adaptive Optics is a prime example of how progress in observational astronomy can be driven by technological developments. At many observatories it is now considered to be part of a standard instrumentation suite, enabling ground-based telescopes to reach the diffraction limit and thus providing spatial resolution superior to that achievable from space with current or planned satellites. In this review we consider adaptive optics from the astrophysical perspective. We show that adaptive optics has led to important advances in our understanding of a multitude of astrophysical processes, and describe how the requirements from science applications are now driving the development of the next generation of novel adaptive optics techniques.Comment: to appear in ARA&A vol 50, 201
    corecore