18,604 research outputs found

    Long-term evolution of massive star explosions

    Full text link
    We examine simulations of core-collapse supernovae in spherical symmetry. Our model is based on general relativistic radiation hydrodynamics with three-flavor Boltzmann neutrino transport. We discuss the different supernova phases, including the long-term evolution up to 20 seconds after the onset of explosion during which the neutrino fluxes and mean energies decrease continuously. In addition, the spectra of all flavors become increasingly similar, indicating the change from charged- to neutral-current dominance. Furthermore, it has been shown recently by several groups independently, based on sophisticated supernova models, that collective neutrino flavor oscillations are suppressed during the early mass-accretion dominated post-bounce evolution. Here we focus on the possibility of collective flavor flips between electron and non-electron flavors during the later, on the order of seconds, evolution after the onset of an explosion with possible application for the nucleosynthesis of heavy elements.Comment: 12 pages, 7 figures, conference proceeding, HANSE 2011 worksho

    Coupling single molecule magnets to quantum circuits

    Get PDF
    In this work we study theoretically the coupling of single molecule magnets (SMMs) to a variety of quantum circuits, including microwave resonators with and without constrictions and flux qubits. The main results of this study is that it is possible to achieve strong and ultrastrong coupling regimes between SMM crystals and the superconducting circuit, with strong hints that such a coupling could also be reached for individual molecules close to constrictions. Building on the resulting coupling strengths and the typical coherence times of these molecules (of the order of microseconds), we conclude that SMMs can be used for coherent storage and manipulation of quantum information, either in the context of quantum computing or in quantum simulations. Throughout the work we also discuss in detail the family of molecules that are most suitable for such operations, based not only on the coupling strength, but also on the typical energy gaps and the simplicity with which they can be tuned and oriented. Finally, we also discuss practical advantages of SMMs, such as the possibility to fabricate the SMMs ensembles on the chip through the deposition of small droplets.Comment: 23 pages, 12 figure

    Measuring the magnetic moment density in patterned ultrathin ferromagnets with submicron resolution

    Get PDF
    We present a new approach to infer the surface density of magnetic moments IsI_s in ultrathin ferromagnetic films with perpendicular anisotropy. It relies on quantitative stray field measurements with an atomic-size magnetometer based on the nitrogen-vacancy center in diamond. The method is applied to microstructures patterned in a 1-nm-thick film of CoFeB. We report measurements of IsI_s with a few percent uncertainty and a spatial resolution in the range of (100(100 nm)2^2, an improvement by several orders of magnitude over existing methods. As an example of application, we measure the modifications of IsI_s induced by local irradiation with He+^+ ions in an ultrathin ferromagnetic wire. This method offers a new route to study variations of magnetic properties at the nanoscale.Comment: 9 pages and 7 figures including main text and Supplemental Informatio

    Cellular automaton supercolliders

    Get PDF
    Gliders in one-dimensional cellular automata are compact groups of non-quiescent and non-ether patterns (ether represents a periodic background) translating along automaton lattice. They are cellular-automaton analogous of localizations or quasi-local collective excitations travelling in a spatially extended non-linear medium. They can be considered as binary strings or symbols travelling along a one-dimensional ring, interacting with each other and changing their states, or symbolic values, as a result of interactions. We analyse what types of interaction occur between gliders travelling on a cellular automaton `cyclotron' and build a catalog of the most common reactions. We demonstrate that collisions between gliders emulate the basic types of interaction that occur between localizations in non-linear media: fusion, elastic collision, and soliton-like collision. Computational outcomes of a swarm of gliders circling on a one-dimensional torus are analysed via implementation of cyclic tag systems

    The Berwald-type linearisation of generalised connections

    Get PDF
    We study the existence of a natural `linearisation' process for generalised connections on an affine bundle. It is shown that this leads to an affine generalised connection over a prolonged bundle, which is the analogue of what is called a connection of Berwald type in the standard theory of connections. Various new insights are being obtained in the fine structure of affine bundles over an anchored vector bundle and affineness of generalised connections on such bundles.Comment: 25 page

    Chromomagnetic Dipole Moment of the Top Quark Revisited

    Full text link
    We study the complete one-loop contributions to the chromagnetic dipole moment Δκ\Delta\kappa of the top quark in the Standard Model, two Higgs doublet models, topcolor assited technicolor models (TC2), 331 models and extended models with a single extra dimension. We find that the SM predicts Δκ=0.056\Delta\kappa = - 0.056 and that the predictions of the other models are also consitent with the constraints imposed on Δκ\Delta\kappa by low-energy precision measurements.Comment: 20 pages, 5 figures, Updat

    The f0(1370)f_0(1370), f0(1710)f_0(1710), f2(1270)f_2(1270), f2(1525)f_2'(1525), and K2(1430)K_2^*(1430) as dynamically generated states from vector meson - vector meson interaction

    Full text link
    We report on some recent developments in understanding the nature of the low-lying mesonic resonances f0(1370)f_0(1370), f0(1710)f_0(1710), f2(1270)f_2(1270), f2(1525)f_2'(1525), and K2(1430)K_2^*(1430). In particular we show that these five resonances can be dynamically generated from vector meson--vector meson interaction in a coupled-channel unitary approach, which utilizes the phenomenologically very successful hidden-gauge Lagrangians to produce the interaction kernel between two vector mesons, which is then unitarized by the Bethe-Salpeter-equation method. The data on the strong decay branching ratios, total decay widths, and radiative decay widths of these five states, and on related J/ψJ/\psi decay processes can all be well described by such an approach. We also make predictions, compare them with the results of earlier studies, and highlight observables that if measured can be used to distinguish different pictures of these resonances.Comment: 9 pages; Invited talk at workshop CHIRAL'10, Valencia (Spain), June 21-24, 201

    Some applications of quasi-velocities in optimal control

    Get PDF
    In this paper we study optimal control problems for nonholonomic systems defined on Lie algebroids by using quasi-velocities. We consider both kinematic, i.e. systems whose cost functional depends only on position and velocities, and dynamic optimal control problems, i.e. systems whose cost functional depends also on accelerations. The formulation of the problem directly at the level of Lie algebroids turns out to be the correct framework to explain in detail similar results appeared recently (Maruskin and Bloch, 2007). We also provide several examples to illustrate our construction.Comment: Revtex 4.1, 20 pages. To appear in Int. J. Geom. Meth. Modern Physic
    corecore