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Abstract. In this work we study theoretically the coupling of single-molecule
magnets (SMMs) to a variety of quantum circuits, including microwave
resonators with and without constrictions and flux qubits. The main result
of this study is that it is possible to achieve strong and ultrastrong coupling
regimes between SMM crystals and the superconducting circuit, with strong
hints that such a coupling could also be reached for individual molecules close
to constrictions. Building on the resulting coupling strengths and the typical
coherence times of these molecules (∼ µs), we conclude that SMMs can be
used for coherent storage and manipulation of quantum information, either in the
context of quantum computing or in quantum simulations. Throughout the work
we also discuss in detail the family of molecules that are most suitable for such
operations, based not only on the coupling strength, but also on the typical energy
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gaps and the simplicity with which they can be tuned and oriented. Finally, we
also discuss practical advantages of SMMs, such as the possibility to fabricate
the SMMs ensembles on the chip through the deposition of small droplets.
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1. Introduction

Solid-state spin ensembles are seen as promising media to store quantum information as
well as to interconnect radio-frequency and optical photons [1–3]. Experiments performed
in the last few years have shown the feasibility of coherently coupling NV or P1 centres in
diamond to either superconducting resonators [4–6] or flux qubits (FQs) [7]. Evidences for
strong magnetic coupling have also been found, even at room temperature, between spin-
1/2 paramagnetic radicals and three-dimensional microwave cavities [8, 9]. For such large
ensembles, the magnetic coupling is enhanced with respect to the coupling of a single spin
by a factor

√
N , where N is the number of spins. Even more challenging is to coherently couple

to individual spins. Provided this limit can be attained, on-chip superconducting circuits could
be used to coherently manipulate and transfer information between spin qubits, thus providing
a suitable architecture to implement an all-spin quantum processor [10].

In this work, we consider a different family of magnetic materials: single-molecule
magnets (SMMs) [11–13]. These are organometallic molecules formed by a high-spin magnetic
core surrounded by organic ligands that naturally organize into molecular crystals. In SMMs
with strong uniaxial magnetic anisotropy, such as Mn12 or Fe8, the magnetization shows
hysteresis (i.e. magnetic memory) near liquid Helium temperatures [14]. In addition, SMMs
show intriguing quantum phenomena such as resonant spin tunnelling [15–18] and Berry phase
interferences between different tunnelling paths [19].

SMMs are also attractive candidates to act as either spin qubits [20–25] or spin-
based quantum memories because of several attractive characteristics: the ability to tune
their properties, e.g. spin, magnetic anisotropy, resonance frequencies, etc by chemical
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design and their high spins (e.g. S = 10 for both Fe8 and Mn12), large densities (typically
∼1020–1021 spins cm−3), and the fact that in many SMM crystals, the anisotropy axes of each
magnetic centre are aligned parallel to each other, which might enable the attainment of stronger
couplings than those previously achieved with other natural spin systems.

Here, we study from a theoretical perspective the specific case of high-spin magnetic
molecules coupled to some quantum circuits, namely superconducting coplanar resonators and
FQs. We examine, on the one hand, the possibility that strong coupling to single molecules
might be achieved in the near future with available technologies and, on the other, what new
physics, or new physical regimes, can be expected from the coupling of SMMs crystals to these
devices. In this way, we aim to provide some guidance to future experimental work in this field.

The paper in organized as follows. Section 2 describes the basic features and the
spin Hamiltonian of SMMs. A generic framework to calculate the magnetic coupling to
electromagnetic rf fields is introduced, and then applied to discuss how such a coupling depends
on molecular properties, such as spin and anisotropy, as well as on the intensity and orientation
of the external magnetic field. The following two sections 3 and 4 give realistic estimates of the
coherent coupling of SMMs to superconducting coplanar resonators and FQs, respectively, as
a function of their dimensions and geometries. The final section 5 gives the conclusions of the
present work and discusses possible experimental implementations.

2. Coupling of single-molecule magnets (SMMs) to quantum radiation fields

2.1. Basic properties and spin Hamiltonian of a SMM

The magnetic configuration of a SMM is mainly determined by exchange couplings between the
ions that form its magnetic core and by their interactions with the crystal field. The former give
rise to multiplets with well-defined spin values, while the latter generate a magnetic anisotropy,
thus also a zero-field splitting within each multiplet. Here, we consider only the ground state
multiplet S and neglect its quantum mixing with excited multiplets. This approximation, widely
used to describe the physics of SMMs, is known as the ‘giant spin approximation’. The effective
spin Hamiltonian of a SMM reads then as follows:

Hs =

∑
k,l

Bl
k O l

k − gSµB (BX SX + BY SY + BZ SZ) , (1)

where O l
k are Stevens effective spin operators [26], Bl

k are the corresponding magnetic
anisotropy parameters, gS is the gyromagnetic ratio and BX , BY and BZ are the components
of an external magnetic field along the molecular axes X , Y and Z . The molecular symmetry
and structure determine which anisotropy parameters are non-zero as well as their relative
intensities.

One of the simplest situations corresponds to a spin with Ising-like second-order
anisotropy, which corresponds to B0

2 < 0 and all other terms being zero, i.e. to a spin
Hamiltonian

Hs = B0
2

[
3S2

Z − S(S + 1)
]
− gSµB (HX SX + HY SY + HZ SZ) . (2)

As figure 1 shows, such a ‘diagonal’ anisotropy splits the S multiplet into a series of doublets,
associated with eigenstates |± m〉 of SZ . As a function m, the energy shows then a characteristic
double-well potential landscape. Off-diagonal anisotropy terms (i.e. those having l 6= 0 in
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Figure 1. Energy level scheme of the [(C6H15N3)6Fe8O2(OH)12] SMM, shown
in the inset and referred to in shorthand as Fe8. Two possible selections of states
for the use of this SMM as qubit are schematically shown.

equation (1)) induce quantum tunnelling, across the magnetic anisotropy barrier, between states
|+ m〉 and |− m〉 and remove their initial degeneracy by a quantum tunnel splitting 1m(0). The
degeneracy can also be removed by the application of an external magnetic field EH . Energy
splittings can be tuned, to some extent, by varying the intensity and orientation of EH (see
figures 2–4). In particular, close to BZ = 0, the splitting between the first excited and ground

states h̄ω12 '

√
[1S( EB)]2 + ξ 2

S , where 1S( EB) is the ground doublet field-dependent quantum
tunnel splitting and ξS = 2gSµB BZ S is the magnetic bias. The magnetic field enables also the
initialization of the SMM state. For S = 10, and at T = 0.1 K, the thermal population of the
ground state becomes & 99.99% for µ0 HZ & 34 mT.

It is worth mentioning here that equation (1) applies also to, e.g. NV-centres in diamond,
which have S = 1 and a zero-field splitting determined by second-order anisotropy terms with
B0

2 ' 2.88 GHz (0.144 K) and B2
2/B0

2 . 3.5 × 10−3. Therefore, the theoretical framework that
follows will enable us to compare both situations.

2.2. Coupling of a SMM to a quantum electromagnetic radiation field

The coupling between a spin, described by the HamiltonianHs, and a superconducting quantum
circuit, described by Hq, is governed by the Zeeman interaction

H=Hq +Hs − ( EW (q)Vq)ES, (3)

where EW (q)
= gSµB EB(q) is proportional to the magnetic field EB(q) generated by the superconduc-

ting circuit at the spin position and Vq is an operator acting on the circuit’s variables.
For the present purposes, the spin can be treated as a two-level system. This is possible by

focusing only on those two spin levels whose energy difference is in (near) resonance with the
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Figure 2. Top: energy levels of a generic SMM (S = 10, B0
2/kB = −0.1 K and

B2
2/kB = 0.1 K) on the left and of GdW10 (S = 7/2, B0

2/kB = −0.059 K and
B4

4/kB = 4 × 10−4 K) on the right as a function of the external field parallel
to the easy axis (BZ ). Bottom: spin matrix elements associated with transitions
between zero-field split levels (i.e. between states |G〉 = |1〉 and |E〉 = |3〉 of
figure 1). For the generic SMM, matrix elements of two different values of
B2

2 are shown. The levels associated with the computational basis |G〉 and |E〉

are marked with thicker lines and labelled in the energy level diagrams. The
inset shows the transition matrix elements for all three components of ES as a
function B2

2 .

circuit’s transition frequency h̄ω. More specifically, we choose the spin ground state |G〉 and
one excited state |E〉. Two possible choices, relevant to real SMMs, are shown in figure 1. We
define the spin transition frequency

h̄ωG,E ≡ 〈E |Hs|E〉 − 〈G|Hs|G〉 (4)
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Figure 3. Top: energy levels of a generic SMM (same parameters as those
used in figure 2) on the left and of TbW30 (S = 6, B0

2/kB = −1.0 K, B0
4/kB =

6 × 10−3 K, B0
6/kB = −1.1 × 10−5 K, B5

6/kB = 1.7 × 10−3 K) on the right as a
function of the external field parallel to the easy axis (BZ ). Bottom: spin matrix
elements associated with transitions between states of the ground state doublet
(i.e. between states |G〉 = |1〉 and |E〉 = |2〉 of figure 1). For the generic SMM
case, the matrix elements of two different values of B2

2 are shown. The two levels
associated with the computational basis |G〉 and |E〉 are marked with thicker
lines and labelled in the energy level diagrams.

and the transition matrix element

h̄g ≡ 〈G| EW (q)ES|E〉

= W (q)

X 〈G|SX |E〉 + W (q)

Y 〈G|SY |E〉 + W (q)

Z 〈G|SZ |E〉. (5)

Achieving strong coupling requires that the SMMs can be tuned to resonance with the
circuit, i.e. that h̄ωG,E ' h̄ω for a given |E〉, and that the relevant matrix element of the
Zeeman interaction is sufficiently large. In the remainder of this section, we discuss how
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Figure 4. Top: energy levels of a generic SMM on the left and of TbW30 (same
parameters as those used in figure 3) on the right as a function of the external
field parallel to the medium anisotropy axis (BY ). The inset shows the energy
difference, in GHz, between |E〉 and |G〉 also as a function of BY . Bottom: spin
matrix element associated with transitions between states of the ground state
doublet (i.e. between states |G〉 = |1〉 and |E〉 = |2〉 of figure 1). For the generic
SMM case, the matrix elements of two different values of B2

2 are shown. The
two levels associated with the computational basis |G〉 and |E〉 are marked with
thicker lines and labelled in the energy level diagrams. The bottom inset shows
the dependence of the spin matrix element on BZ for BY = 2 T.

matrix elements 〈G|SI |E〉, with I = X, Y, Z , thus also g, depend on the choice of state |E〉

as well as on the magnetic anisotropies and experimental conditions that can be met with
real SMMs. The actual coupling g depends also on the magnetic field generated by a given
circuit, thus on its design and geometry. These aspects will be considered in sections 3 and 4
below.
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2.3. Calculation of transition matrix elements

2.3.1. Transitions between zero-field split levels. In this and the next subsections, we consider
a generic S = 10 SMM with Hs described by equation (1) and second-order anisotropy terms
only. This situation applies to some of the best known SMMs, such as Fe8, shown in the inset
of figure 1, or even Mn12. A first choice, reminiscent of the situation met with NV-centres
in diamond, is to identify |E〉 with state |3〉, as shown in figure 1. Neglecting B2

2 , which
plays a minor role here unless it is comparable to B0

2 and BZ ' 0 (see figure 2), this situation
corresponds to |G〉 ' | + S〉 and |E〉 ' | + S − 1〉 for B0

2 < 0 and to |G〉 ' |0〉 and |E〉 ' | + 1〉 for
B0

2 > 0. The splitting h̄ω12 = h̄ω12(0) + gµB BZ , where h̄ω12(0) = 3(2S − 1)B0
2 in the former

case and h̄ω12(0) = 3B0
2 in the latter case. Relevant transition matrix elements correspond to

transverse spin components SX and SY and can be calculated analytically

g ∝
1

2

√(
S − mgs

) (
S + mgs + 1

)
, (6)

where mgs is the Sz eigenvalue of the ground state. Depending on the sign of the anisotropy,
equation (6) gives

B0
2 > 0 ⇒ mgs = 0 ⇒ g ∝

1

2

√
S(S + 1),

B0
2 < 0 ⇒ mgs = +S ⇒ g ∝

1

2

√
2S.

High couplings are therefore achieved for high-spin S materials, optimally with B0
2 > 0.

Furthermore, g is but weakly affected by external magnetic fields (see figure 2). A difficulty
associated with this choice of basis is that the zero-field splittings of high-spin SMMs, such as
Fe8 or Mn12, are often very large (e.g. h̄ω12(0) ' 114 GHz for Fe8) as compared with the typical
resonance frequencies of either superconducting resonators [27, 28] (ω/2π ' 1–40 GHz) or
gap-tunable FQs [29] (for which ω/2π ' 1–10 GHz).

2.3.2. Transitions between ‘spin-up’ and ‘spin-down’ states: photon induced quantum
tunnelling. A second natural choice is to use, as ‘computational’ basis for the spin qubit, the
two lowest-lying eigenstates of Hs at zero field, which we denote here (see figure 1) by |1〉 and
|2〉. For B2

2 = 0, these states correspond to degenerate ‘up’ and ‘down’ spin orientations, thus
all matrix elements vanish. Off-diagonal anisotropy terms give rise to a finite h̄ω12 = 1S(0). At
zero-field, |G〉 ' (1/

√
2)(|+ S〉 + |− S〉) and |E〉 ' (1/

√
2)(| + S〉−|−S〉), thus 〈G|SZ |E〉 ' S,

the other elements being close to zero. This is confirmed by numerical results shown in figure 3.
Considering the high spin of SMMs, this transition can therefore give rise to potentially strong
couplings. However, 1S(0) often lies in the region of micro-kelvins or even smaller. For
instance, 1S ' 10−7 K (10−11 K) or barely 2.1 kHz (0.2 Hz) for Fe8 (Mn12). A magnetic field
needs then to be applied in order to tune ω12 to the circuit frequencies.

Maximum energy changes are obtained when EB is oriented along the easy magnetization
axis Z (figure 3). However, any bias ξS &1S(0) effectively suppresses the overlap between the
wavefunctions of |1〉 and |2〉 states (that effectively become |+ S〉 and |− S〉 states) resulting
in a dramatic decrease of g with increasing BZ . The matrix elements show, in fact, narrow
peaks at those values of BZ that induce level anti-crossings. These resonances are associated
with a photon induced tunnelling process between quasi-degenerate spin states. Resonances
occur only at every even numbered level crossings (i.e. for BZ ' nB1, with B1 = 3B0

2/gSµB
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Figure 5. Molecular structures of LnW10 (left) and of LnW30 (right) SIMs.

and n = 0, 2, . . .) because B2
2 O2

2 only mixes states |m〉 and |m ′
〉 such that m − m ′ is even. The

width of each resonance (thus also the field region of potential interest for coupling to a circuit)
can be increased by enhancing the off-diagonal parameter B2

2 , although it nevertheless remains
very narrow even for the maximum B2

2 = B0
2 .

Alternatively, h̄ω12 can also be tuned, while retaining a strong overlap between |1〉 and
|2〉, thus a high 〈G|SZ |E〉 (see figure 4), by a transverse magnetic field BY . This is a highly
nonlinear effect (see the inset of figure 4), meaning that strong magnetic fields are required to
make ω12 close to ω. The use of stronger magnetic fields also imposes stringent conditions to
the alignment of EB which, as follows from the data shown in the bottom inset of figure 4, cannot
deviate more than about 0.5◦ from the XY plane.

2.3.3. Single ion magnets versus SMMs. The previous results show that, because of their high
spin values, the coupling of SMMs to a rf magnetic field can attain very high values. However,
the also high magnetic anisotropy barriers (they tend to increase with S) and correspondingly
small quantum tunnel splittings can pose some important technical difficulties: the use of very
high frequencies to attain resonant conditions with zero-field split levels (&110 GHz for Fe8 or
&220 GHz for Mn12) or the need of applying strong and very accurately aligned magnetic fields
if one focuses on transitions within the tunnel split ground state doublet. In addition, achieving
a pre-designed control over relevant parameters (spin and magnetic anisotropies) is a difficult
task, if feasible at all, with polynuclear clusters.

Mononuclear SMMs (or single ion magnets (SIMs) [30–32]) are, by contrast, much
simpler: they consist of just one magnetic ion, often a lanthanide, encapsulated inside a non-
magnetic shell of ligand molecules. These materials can be seen as the molecular analogues
to diluted lanthanide salts, which are also seen as promising spin qubits [33]. An advantage of
molecular SIMs over these materials is that the local coordination of the magnetic ion can be
modified by adequately choosing the nature and structure of the ligand shell, thus providing a
rich playground for the rational design of their spin Hamiltonian [34].

Some specific examples can help to understand how the problems mentioned above can be
overcome with the use of simpler molecules. Here, we discuss some possibilities offered by two
families of SIMs based on polyoxometalate complexes (see figure 5). If one seeks to reduce the
magnetic anisotropy, thus also the zero-field splitting h̄ω13, the use of Gd3+ ions is a good option
because of their close to spherical electronic configuration. In addition, the sign and intensity
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of the magnetic anisotropy are determined, to a large extent, by the local coordination [34]. In
the elongated GdW10 molecule, for instance, the preferred magnetization axis points along the
molecular axis Z , giving rise to a ground state mgs ± 7/2 separated from the first excited doublet
±5/2 by a small zero-field splitting. This leads to a rather convenient value for the resonance
frequency ω13/2π ' 20 GHz. For the donught-shaped GdW30 molecule, the anisotropy is even
weaker and of opposite sign (i.e. B0

2 > 0), thus Z becomes a hard magnetization axis and the
easy axis (Y ), lying within the molecular plane, is determined by the presence of strong off-
diagonal anisotropy terms. At zero field, the splitting is h̄ω13 ' 6.4 GHz, thus in tune not only
with coplanar resonators but also with gap-tunable FQs. In fact, all spin levels of GdW30 lie
within a frequency band of about 20 GHz, accessible to most superconducting circuits.

For lanthanide ions other than Gd3+, the magnetic anisotropy and the ground state depend
also on intrinsic electronic structure of the ion itself. A particularly interesting situation is found
for TbW30. The combination of second- fourth- and sixth-order diagonal anisotropy terms gives
rise to a ground state doublet with mgs = ±5 [35]. More importantly, the fivefold molecular
symmetry allows the presence of a strong B5

6 O5
6 term, which efficiently mixes these spin states.

The result is a two-level spin system characterized by a large zero-field quantum tunnel splitting
1S(0) ∼ 60 GHz and therefore a high transition matrix element g. More importantly, g is very
robust against the action of external magnetic fields (see figures 3 and 4).

3. Coupling of SMMs to superconducting coplanar resonators

3.1. Device description and parameters

Coplanar resonators are microwave devices that consist of a λ/2 section of a coplanar waveguide
(CPW) that is coupled to external feed lines via gap capacitors. A schematic diagram of such
a device is shown in figure 6. The fundamental mode resonant frequency is determined by the
length of the resonator through the equation f0 =

c
√

εeff

1
2l . Here εeff is the effective dielectric

constant of the CPW and depends on the waveguide geometry and the dielectric constants of
the surrounding media [36]. As with transmission lines, the electromagnetic mode is described
as a voltage and current wave where the current in the centre line is equal and opposite to the
current in the ground plates.

Making the resonator out of superconducting materials, such as Nb or NbTi, and using low
loss dielectric substrates, such as sapphire, helps to reduce the losses in the system and allows
the reduction of the resonator cross section down to the micrometer level while maintaining
quality factors of up to 105–106 [37–39].

3.2. Coherent coupling to individual SMMs and SMM ensembles

For a resonator, equation (3) takes the following form [40]:

H=Hs +Hres − Eµ · EB(q)

=Hs + h̄a†a + h̄g(Er j)σx(a − a†), (7)

where we have projected onto the basis formed by the two relevant SMM states |G〉 and |E〉, σx

is the Pauli matrix acting on this basis and the coupling strength

g(Er j) = gSµB|〈G|Ebrms(Er j)ES|E〉| (8)

New Journal of Physics 15 (2013) 095007 (http://www.njp.org/)
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Resonator dimensions
s 7 µm
w 50 nm to 14 µm
t 150 nm
H 75 µm

Sample dimensions
Width 40 µm
Length 40 µm
Height 0.1 to 75 µm

Figure 6. Basic geometry and dimensions of the CPW resonator and the
magnetic samples used for the calculations described in this work.

with Ebrms(Er j) the root mean square value of the field Eb generated by the vacuum current (see
below). The position Er j matches the spin location. Through this section we will assume that the
magnetic sample is centred at the maximum magnetic field strength generated by the resonator,
i.e. at the midpoint of the resonator.

The coupling per spin is usually small (of the order of a few 100 Hz, see below) and losses
can easily overcome the coherent coupling. Therefore, we will also consider the coupling to an
ensemble, e.g. a crystal, of N SMMs. For this, we sum (8) over each spin at position Erj. It is
convenient to introduce the collective spin operator

b†
=

1
√

N ḡ

N∑
j

g∗

j σ
+
j , (9)

where ḡ is the average coupling, defined as ḡ2
≡

∑
j

∣∣g j

∣∣2
/N . In the low polarization

level 〈
∑

σ
†
j σ

−

j 〉�N these operators approximately fulfil bosonic commutation relations,
[b, b†] ≈ 1 [41]. Equation (7) then becomes approximately equal to the Hamiltonian of two
coupled resonators

H=Hq +Hs − h̄gN (b† + b)(a† + a) (10)

with an effective coupling given by

g = gs
µB

h

√
n

∫
V

|〈G|Ebrms · ES|E〉|2dV , (11)

where we have replaced the sums by integrals and assumed a uniform density n. Let us
emphasize that equation (11) leads to a

√
N enhancement of the effective coupling with respect

to that of a single spin.
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In order to calculate the collective coupling of SMMs to a single photon, one needs to
evaluate the magnetic field generated by the rms of the vacuum current fluctuations, Irms. This
current can be found considering that the zero point energy of the resonator is shared equally
between the electric and magnetic fields

h̄ω

4
=

1

2
L I 2

rms ⇒ Irms = ω

√
h̄π

4Z0
, (12)

where L = 2Z0/(πω) is the lumped inductance of the resonator [42] and Z0 is the characteristic
impedance of the transmission line segment that forms the resonator. Taking a standard value
of Z0 ' 50 �, we find that the vacuum current fluctuations are of about 8 nA GHz−1. For
ω/2π . 37 GHz, the current in a resonator is therefore somewhat smaller than the current
Ip ∼ 0.3 µA circulating via a FQ close to its compensation point, so we can then expect smaller
couplings.

We use the Comsol multiphysics ac/dc module to calculate the field distribution given
the resonator geometry and currents. We model only a cross section of the resonator so the
calculated fields are approximated by those generated by an infinite conductor length. This
approximation holds as long as the SMM crystals are placed close to the resonator centre and
the crystal length is much shorter than that of the resonator itself, which ranges from 0.5 to
10 mm for the frequencies of relevance here.

Even for dc currents, the current density distribution in a superconductor is not uniform
and different from that of a normal conductor. In real superconductors, the superconducting
current density decays exponentially with the distance to its surface and the decay constant is the
London penetration depth λL. For Nb, λL ' 80 nm at 4 K and increases as temperature increases
towards the critical temperature (Tc ' 9 K) [43]. Since the thickness of the superconducting
lines we consider (see figure 6) is of this order or smaller, we need to simulate the current
distribution carefully to take this effect into account. As a first approximation, we use the skin
effect of standard conductors to produce the current profiles in the superconducting regions, i.e.
we use alternating currents and tune the frequency ωac and material parameters (conductivity σ

and magnetic permeability µ) in the simulation to make the skin depth of the conductor

λskin =

√
2

σωac µ
(13)

equal to λL = 80 nm.
Taking all this into account, we simulate the magnetic field distribution for the geometry

shown in figure 6. A typical magnetic field distribution is shown in figure 7. As expected, the
superconducting current and magnetic field concentrate near the edges of the centre line and
the inner edges of the ground planes. Using these magnetic field distributions and the matrix
element values calculated for each SMM sample, it is possible to obtain the coupling strength
from equation (11) for crystals of varying dimensions. An appealing aspect of many SMMs
crystals (including those considered here) is that the magnetic anisotropy axes of all molecules
are aligned with respect to each other. This enables orienting them so that the fields from the
resonator can induce the desired transitions. Each sample and each choice of computational
basis has a different optimal orientation of the magnetic anisotropy axes (X, Y, Z ) with respect
to the resonator coordinate system (x, y, z). In our simulations, the axis with the largest absolute
value of the transition matrix element points along the x-axis of the resonator (i.e. horizontal,
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Figure 7. Simulated field distribution on a CPW cross-section. The white profile
is the field value calculated at a constant distance from the substrate y = t , that
is, right at the surface of the superconducting regions.

see figures 6 and 7) while the second largest is placed along the y-axis (i.e. perpendicular to the
resonator). This is because the integral of b2

X entering in equation (11) is slightly larger than the
b2

Y integral, thus leading to also slightly larger gN . We also calculate the collective coupling
of NV-centres in diamond crystals. In this case, one has to average over the four different
orientations of their magnetic anisotropy axes. In all these calculations, we consider crystals
of fixed length and width (both equal to 40 µm, see figure 6) and study how gN depends on the
crystal thickness (thus also the number of spins), from 100 nm to 75 µm.

The results are shown in figure 8 for several SMMs and different choices of their
computational basis |G〉 and |E〉 as well as for NV-centres in diamond. We see that the coupling
first increases with crystal thickness and then saturates once the crystal is thicker than about
10–15 µm. This behaviour reflects the decay of Eb with the distance y from the resonator surface.
It shows that only a very thin layer of spins significantly contributes to gN and emphasizes the
importance of carefully placing the sample on top of the device. As would be expected, the
dependence on the crystal thickness is essentially the same for all samples.

It can be seen that, because of their specific characteristics, the coupling to SMM crystals
can be very large, much larger indeed than the coupling to NV-centres in diamond crystals of
equivalent size. The largest couplings gN ' 2–3 GHz are found for transitions between tunnel
split states of Tb30 and between states 1 and 3 of Fe8. Yet, these transitions are characterized
by very high resonance frequencies ω12 ∼ 60 GHz and ω13 ' 114 GHz, respectively. Very large
couplings (gN ' 0.5 GHz) are also found for transitions between tunnel split states of e.g. Fe8,
for which ω12 can be tuned by applying external magnetic fields (see figure 4). However,
one then has to deal with rather strong (& 2 T) and very accurately aligned (typically within
less than 0.5◦) magnetic fields (see figure 4). For this reason, it might be experimentally
simpler to work with Gd-based SIMs, for which ω13 lies between 6.4 and 20 GHz, and
whose transition matrix elements are more robust against the action of external magnetic
fields.

The couplings need to be compared with spin decoherence frequencies ∼1/T2, where T2 is
the phase coherence time. Experiments performed on crystals of GdW10 and GdW30 [34], and
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Fe8 ω12 Fe8 ω13 GdW10 ω13 TbW30 ω12 GdW30 ω13 NV centres
5.6 GHz 114.6 GHz 22.1 GHz 60 GHz 6.4 GHz 2.88 GHz

(BY = 2.325 T)

Figure 8. Coupling of 40 µm × 40 µm × thickness SMM and diamond crystals
to a CPW resonator as a function of crystal thickness. On the left we show
the total coupling strength and on the right we show the coupling strength
normalized by the resonator frequency. For each sample, ωi j denotes the
transition used and the operating frequencies are detailed in the table above.

of Fe8 [44] show that T2 . 500 ns at liquid helium temperatures and under the best conditions,
thus much shorter than T2 ∼ 1–2 ms of NV-centres [45] at room temperature. Still, the strong
coupling limit gN T2/2π � 1 should be relatively easy to achieve for all these molecular
materials. Furthermore, for some of the examples given in figure 8, gN can in fact become a
sizeable fraction of the resonator frequency, thus opening the possibility to reach and explore
the ultra-strong coupling limit with a spin ensemble.

3.3. Nanoscale resonators

The simulations described in the previous section enable one to estimate also the coupling to a
single SMM at any location with respect to the device. For a molecule placed in between the
ground and central lines, we find that g ranges between 100 Hz and a few kHz, depending on the
particular sample. Notice, however, that the magnetic field is enhanced, up to a factor 5 or so,
in narrow regions close to the edges of these lines (remember figure 7). Two distinctive aspects
of SMMs, which are not easily found in other qubit realizations, is that they are sufficiently
small, with lateral dimensions of the order of 1 nm, to fit inside these regions and that they
can be delivered from a solution with very high spatial accuracy by, e.g. using the tip of
an atomic force microscope [46]. The magnetic field generated near the central line edges,
thus also the coupling to molecules or molecular ensembles located near them, can be further
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Figure 9. Coupling of a single SMM to a CPW resonator as a function of centre
line width. The SMM is located at the point of maximum field on the surface of
the centre line. For each sample, ωi j denotes the transition used and the operating
frequencies are detailed in figure 8.

enhanced by fabricating narrow constrictions. Superconducting circuits with dimensions well
below 100 nm can be fabricated, and even repaired, by either etching with a focused ion beam
or by using the same ion beam to induce the growth of a superconducting material from a gas
precursor [47]. Provided that these constrictions are much shorter than the photon wave length,
they are expected to have very little effect on the general resonator characteristics.

In order to explore this possibility, we have repeated the above simulations for varying
centre line widths, down to 50 nm, while keeping current constant. We then evaluate the
coupling to a single SMM located at the point of maximum field on the surface of the centre line
and oriented in such a way as to maximize the transition matrix element. The results are shown
in figure 9. We see that reducing the width from 14 µm to 50 nm can lead to enhancements
of an order of magnitude in the coupling strength. Again, the dependence on the geometry
is the same for all samples. The conclusion is that achieving strong coherent coupling of a
single SMM (e.g. TbW30) to such nanoresonators requires that the decoherence time T2 of an
individual molecule grafted to a superconducting device can be made significantly longer than
10 µs. Despite the lack of T2 data for truly isolated molecules, it seems that such coherence times
can be reached under adequate conditions, i.e. for molecules having a very low concentration of
nuclear spins [48].

Before moving to the following section, it is worth mentioning here that the potential
applications of superconducting resonators or transmission wave guides that maximize the
magnetic coupling to very small spin ensembles, or eventually enable detecting single spins,
extend well beyond the quantum information research field. For instance, these designs might
contribute to the optimization of on-chip electron paramagnetic resonance spectrometers for the
characterization of magnetic materials [49].
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4. Coupling of SMMs to flux qubits

4.1. Device description and parameters

FQs are superconducting loops interrupted by, almost always, three junctions [50]. When half
of a flux quanta passes through the loop, the two lowest eigenstates of the qubit Hamiltonian are
symmetric and antisymmetric superpositions of counter propagating persistent currents. Those
states define the qubit states, and will be denoted as {|	〉, |�〉}. By changing the flux, the qubit is
biased to one of those currents. Furthermore, any influence of higher excited levels can be safely
neglected for standard qubit parameters. Therefore for our purposes the FQ can be modelled as
a two level system:

HFQ =
ε

2
σz +

1

2
σx (14)

with 1 the qubit gap which lies in the GHz regime and ε = 2Ip(φext − 80/2) the bias term
associated with the external flux φext and Ip the persistent current in the loop. Here we
have chosen the physical basis where the eigenstates are the clockwise and anticlockwise
supercurrents: {|	〉, |�〉}.

FQs provide a platform for hybrid structures because their ability to couple to magnetic
moments through the field induced by the supercurrents in the loop. Previous studies have
focused on considering the coupling to NV-centres [3], with recent experimental realizations
showing promising results [29]. Some applications of these hybrid structures to quantum
information processing have been recently pointed out [41, 51, 52].

4.2. Coherent coupling to SMMs

Within the state of the art of both qubit geometry and parameters the coupling to single spins
is too weak to overcome the losses. Therefore, in this section we will discuss the coupling
between a FQ and a spin ensemble. A schematic representation of a possible layout is depicted
in figure 10.

Following the same reasoning from the previous section, we can again arrive at a Rabi like
model:

H =
1

2
σx + ωb†b + gσz(b

† + b), (15)

where, for simplicity, we have chosen to be at the degeneracy point ε = 0 (cf equation (14)). The
spin collective modes, b, b†, were defined in equation (9) and the coupling in (11). In this case,
the magnetic field, b(Er j) is generated by the circulating currents in the qubit (cf equation (11)).
The current operator can be written as

I =

∑
m,n=	,�

|n〉〈n|I |m〉〈m| = Ip|	〉〈	| − Ip|�〉〈�| = Ipσz (16)

that justifies the coupling through σz. The magnetic field strength, b(Er) entering in the formula
for g, equation (11), corresponds to the field generated in a loop with a circulating current Ip.

To estimate this coupling, we again perform numerical simulations in Comsol multiphysics
assuming a superconducting loop with current Ip. As in the previous section, we simulate the
field at a cross section at the centre of the FQ and choose a crystal size of about half the length of
the FQ (see figure 10) to avoid edge effects. We also use the skin effect, as before, to simulate the
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Flux-Qubit dimensions
L 43 µm
W 3.25 µm
w 1.2 µm
t 150 nm

Sample dimensions
Height 0 to 40 µm
Width 20 µm
Depth 20 µm
S 0 to 15 µm

Figure 10. Basic geometry and dimensions of the FQ and the magnetic samples
used for the calculations described in this work. The FQ dimensions resemble
those from [7].

superconducting current distribution (see equation (13)). An example of the field distributions
found is shown in figure 7. We complement our numerical studies with an analytical approach.
In order to get a tractable and closed formula for the magnetic field generated, we approximate
the qubit by two parallel counter currents, Ip. This yields for the magnetic field

b =
µ0 Ip

2 π

 1

(x + w/2)2 + y2

 −y
x + w/2

0

 −
1

(x − w/2)2 + y2

 −y
x − w/2

0

 . (17)

Both numerical and analytical estimates for g are shown in figure 12. We plot our results
as a function of crystal height and as a function of the vertical separation between the crystal
and the FQ (S in figure 10). As with the resonator, we observe a saturation of g beyond a certain
height. This can also be understood by looking at the dependence on separation S. The field
saturation occurs between 1 and 10 µm, i.e. when the magnetic field becomes negligible. We
also observe that our simple analytical estimation closely reproduces the numerical results.

In the case of FQs we have compared two species: GdW30 and NV-centres, with zero field
level splittings of 6.4 and 2.8 GHz, respectively. These transition frequencies lie in the range of
available qubit tunnelling gaps. The achievement of strong coupling between NV-centres and
a FQ has been recently reported in [29]. From the present results we conclude that, as we had
anticipated, spin ensembles tend to couple more strongly to FQs than to resonators, cf figures 8
and 12. Also, as in the case of the resonators, the coupling to SMMs is stronger than that to
NV-centres. This point is interesting since the qubit-ensemble coupling can reach up to 10%
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Figure 11. Simulated field distribution on a FQ cross-section at the centre of the
device. The white profile is the field value calculated at a constant distance right
at the surface of the superconducting regions.
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Figure 12. Coupling of SMM crystals to a FQ as a function of crystal height (left)
and as a function of the vertical (i.e. along y) separation between the crystal
and the device, normalized by the qubit frequency ω. Solid lines represent the
analytical estimations that follow from equation (17) while the dots are from the
numerical simulation.

of the qubit natural frequency. For such a coupling strength, the qubit-spin ensemble system
enters the so-called ultrastrong coupling limit [53, 54]. This means that the full model (15) is
needed to understand the physics. In the usual case of weaker coupling, one can rotate the qubit
basis σx → σz and write the interaction within the rotating wave approximation g(σ +a + σ−a†),
with σ± = σx ± iσy . The latter approximation allows a perturbative treatment. Therefore, SMMs
are candidates to observe analogues of light–matter interaction beyond perturbative treatments.
We finish by noting that the FQ parameters used here were taken from the experimental paper
in [29]. Further optimization of the parameters and of the FQ shape could yield even stronger
couplings.
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5. Conclusions: why SMMs?

The results described in previous sections confirm that, because of their high spins and
spin densities, SMMs have the potential to attain very high couplings with superconducting
circuits. In addition, the great variety of magnetic molecules enables a vast choice of resonance
frequencies. However, for many of the best-known SMMs, such as Fe8 or Mn12, the strong
magnetic anisotropy introduces also some technical difficulties, i.e. the need to work at very
high frequencies, above 100 GHz, or the application of strong (above 2 T) and very accurately
aligned (within 0.5◦) magnetic fields. For this reason, it will probably be more adequate to work
with SIMs, i.e. molecules with just one magnetic ion. Compared with polynuclear clusters, these
molecules have the advantage of being simpler, thus its physical response is easier to describe,
offer a greater versatility for the modification of the spin Hamiltonian via the rational design of
the local coordination shell surrounding the central magnetic ion, and can be made more robust
against decoherence.

Yet, it seems natural to inquire whether SMMs might bring some new possibilities, not
easily achievable with other spin systems. A first, quantitative answer to this question is
given by the couplings of SMMs crystals to superconducting resonators and FQs that we
find. In both cases, the collective coupling attains significant fractions, ∼10%, of the natural
circuit frequency, much larger than those observed so far for, e.g. NV-centres in diamond.
Under these conditions, the combined system enters the ‘ultra-strong’ coupling limit, meaning
that perturbative treatments are no longer applicable to describe the underlying physics. Of
fundamental interest is the coupling of an SMM crystal to a FQ, because it is analogue to the
light-matter interaction in cavity QED [29], the spin ensemble playing the role of an oscillator
bath. Taking into account the vast ranges of parameters that can be explored (by e.g. varying the
spin concentration or the energy gaps) this hybrid device can therefore be used to simulate the
physics of open systems, help to understand and control the associated decoherence or develop
noise resilient computation protocols.

From a more practical point of view, the attainment of strong coupling conditions might
also confer to these systems interest as quantum memories [1–3]. A major difficulty arises
though from the short lived spin coherence of these molecular systems. Decoherence times
measured on SMMs crystals [44] are still orders of magnitude shorter than those found for,
e.g. NV-centres [45]. Therefore, SMMs cannot be considered for such applications unless
coherence times are enhanced significantly. However, chemistry also provides suitable means
to minimize the main sources of decoherence. For instance, isotopically purified molecules
can be synthesized, in order to decrease the number of environmental nuclear spins [55].
Also, decoherence caused by nuclear spin diffusion can be reduced by using sufficiently rigid
ligand molecules [48]. Pairwise decoherence caused by dipolar interactions [56] can be reduced
by either dissolving the molecules in appropriate solvents [48, 55, 57, 58] or by growing
crystals in which a fraction of molecules is replaced by non-magnetic ones [34]. Working with
magnetically diluted samples has, however, a cost in terms of coupling. Therefore, a gain in
performance (i.e. a net enhancement of gN T2/2π ) can only be achieved provided that T2 grows
faster than 1/

√
(N ), a condition that seems to hold in the very low temperature limit kBT � h̄ω,

when magnon-mediated decoherence is expected to dominate [56]. For a given spin density,
the strength of dipolar interactions also decreases with S, thus it can be reduced by working
with low-spin molecules, e.g. SIMs containing lighter lanthanide ions (Ce3+, Sm3+ or Gd3+)
or S = 1/2 paramagnetic radicals [8, 9] and Cr7Ni molecular rings [22, 48, 55]. The material
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of choice will therefore largely depend upon the attainment of an optimum tradeoff between
maximizing gN and T2.

But probably the main interest of SMMs is that they are also qualitatively different
to most other spin systems in that they can be chemically engineered to fulfil very diverse
functionalities. Restricting ourselves to the field of quantum information, magnetic molecules
can be much more than single spin qubits [22, 59]. Some molecular structures [60–62] embody
several weakly coupled, or entangled, qubits which can provide realizations of elementary
quantum gates [63] or act as quantum simulators [64]. In addition, their multilevel magnetic
energy structure can be used to encode multiple qubit states or even to perform quantum
algorithms [20]. Coupling to quantum circuits can provide a method to experimentally realize
these ambitious expectations, provided that one is able to strongly couple, thus coherently
manipulate and read-out, individual molecules. In this respect, the fact that most SMMs are
stable in solution opens the possibility to deposit them, in the form of monolayers or even
individually, onto solid substrates [65] or at specific locations of a given device that maximize
g [46, 66]. Our simulations show also that it is then possible to reach significantly larger
couplings g, which can be further enhanced (up to g/2π ∼ 100–200 kHz, see figure 9) by the
fabrication of narrow constrictions in the centre line of superconducting nanoresonators. These
results suggest that the strong coupling limit is attainable for individual molecules, using state-
of-the art technologies, provided that decoherence times can be made longer than 10–20 µs.
Considering the available experimental evidences [48, 55], this limit, thus the realization of
quantum technologies based on SMMs coupled to quantum circuits, seems definitely within
reach.
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