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We present a new approach to infer the surface density of magnetic moments Is in ultrathin
ferromagnetic films with perpendicular anisotropy. It relies on quantitative stray field measurements
with an atomic-size magnetometer based on the nitrogen-vacancy center in diamond. The method is
applied to microstructures patterned in a 1-nm-thick film of CoFeB. We report measurements of Is
with a few percent uncertainty and a spatial resolution in the range of (100 nm)2, an improvement
by several orders of magnitude over existing methods. As an example of application, we measure the
modifications of Is induced by local irradiation with He+ ions in an ultrathin ferromagnetic wire.
This method offers a new route to study variations of magnetic properties at the nanoscale.

Ultrathin ferromagnetic films with perpendicular mag-
netic anisotropy (PMA) have attracted considerable in-
terest over the last years both for fundamental studies in
nanomagnetism and for the development of a new gen-
eration of low power spintronic devices [1–3]. In this
context, it is crucial to determine accurately the surface
density of magnetic moments Is in such ultrathin ferro-
magnets, which can not be simply inferred from tabu-
lated bulk values owing to significant interface effects [4].
To this end, macroscopic magnetometry methods like su-
perconducting quantum interference devices (SQUIDs)
or vibrating-sample magnetometers have become ubiq-
uitous owing to simplicity of use. However, these con-
ventional techniques are prone to parasitic magnetic sig-
nals, leading to an intrinsic background on the order of
10−10 A.m2 [5–7], which corresponds to ≈ 1013µB [8].
To overcome this background, the ferromagnetic signal
needs to be averaged over a large sample, thus limiting
drastically the spatial resolution of the measurement. As
an example, we consider a ferromagnetic film with a typ-
ical thickness t = 1 nm and a saturation magnetization
of Ms = 106 A/m, corresponding to a surface density of
magnetic moments Is = Mst ≈ 100 µB/nm2. In order
to reach a signal-to-background ratio of ∼ 10, the signal
must be averaged over a surface larger than (1 mm)2.

Different approaches have been used to tackle this is-
sue. Notably, a recent improvement of the spatial reso-
lution down to the order of (10 µm)2 has been achieved
by measuring the dipolar repulsion of magnetic domain
walls with a magneto-optical Kerr microscope [9]. The
use of micro- and even nano-SQUID also allows for a sig-
nificant gain in sensitivity and resolution. However it re-
mains difficult with such devices to determine accurately
the link between magnetic flux and magnetization, and
thus to extract precise values of Is [10].

In this work, we use a single nitrogen-vacancy (NV)
center in diamond as an atomic-size magnetometer to
probe the stray field above ultrathin ferromagnets and
infer Is on a scale smaller than (100 nm)2. Importantly,
the experiment operates under ambient conditions with-
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Figure 1. (a) Schematic view of the magnetization M at the
edge of a ferromagnetic material with PMA. The grey arrows
indicate the resulting magnetic field lines. (b),(c) Magnetic
field components Bed

x (x) and Bed
z (x) calculated at a distance

d = 100 nm using Eq. (4) for Ms = 106 A/m and t = 1 nm,
corresponding to Is =Mst ≈ 100 µB/nm

2, which is a typical
value for the ferromagnetic samples considered in this work.
The edge is placed at x = 0.

out applying any external magnetic field, which enables
excluding parasitic signals from extrinsic magnetic impu-
rities. As an example of application, we demonstrate how
this method can be used to study local variations of mag-
netic properties with submicron resolution, by measuring
modifications of Is induced by local irradiation with He+
ions in an ultrathin ferromagnetic wire.

We start by describing the general principle of the
method. Any magnetization pattern presenting a non-
zero divergence ∇ ·M 6= 0 produces magnetic charges
with opposite signs, which play a role similar to electric
charges in electrostatics. Therefore, a magnetic film with
PMA can be seen as the magnetic counterpart of a planar
capacitor. In a same way that an electric field is only gen-
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Figure 2. (a) Principle of the experiment. Magnetic field measurements across a ferromagnetic wire (width w) are performed
with a scanning-NV magnetometer operating in tapping mode. The inset indicates the quantization axis of the NV defect
electronic spin uNV, characterized by the spherical angles θ and φ in the (xyz) reference frame. (b),(c) Zeeman-shift profile
measured by scanning the NV defect across a 1-µm-wide wire of Ta|CoFeB (1 nm)|MgO. The blue curve is the simultaneously
recorded AFM topography of the sample. Two NV probes with different orientations (θ, φ) are used in (b) and (c). The red
solid lines are data fitting from which the parameters (Is, d) are extracted. The uncertainties, corresponding to one standard
deviation, are evaluated by following the analysis described in the main text.

erated out of the edges of a planar capacitor, magnetic
field is only produced at the edge of an uniformly mag-
netized ferromagnetic film. The central idea of this work
is to directly infer the surface density of magnetic mo-
ments Is through local and quantitative measurements
of this stray field, denoted Bed. For an ultrathin mag-
netic film with PMA, it scales linearly with the number of
surrounding magnetic moments and can be computed an-
alytically at any distance d above the edge. In the limit
d � t and considering a one-dimensional (1D) model
with an infinitely long edge along the y axis [Fig. 6(a)],
the stray field components above an edge placed at x = 0
are simply given by [11]

Bed
x (x) =

µ0Is
2π

d

x2 + d2
+O((t/d)3)

Bed
z (x) = −µ0Is

2π

x

x2 + d2
+O((t/d)3) .

(1)

For both components, the field maximum scales as Is/d
while the characteristic width of the distribution is given
by 2d [see Figs. 6(b) and (c)]. The value of Is and d
can therefore be directly inferred by using Eq. (4) to fit
magnetic field distributions recorded above the edge of
an uniformly magnetized ferromagnetic film.

Although the principle of the method is rather simple,
its experimental realization is highly demanding since it
requires quantitative magnetic field measurements com-
bined with a spatial resolution at the nanoscale. To
meet these requirements, we employ a recently intro-
duced magnetometry technique based on a single NV de-
fect in diamond [12–14]. This point-like impurity has a
spin triplet ground state whose electron spin resonance
(ESR) can be interrogated by optical means [15]. This
property enables quantitative magnetic field measure-

ments within an atomic-size detection volume by record-
ing Zeeman shifts of the NV defect electronic spin sub-
levels [16]. In the last years, NV-based magnetometry
has been used to investigate magnetic vortices [17] and
spin-wave excitations in ferromagnetic microdiscs [18],
as well as domain walls in ultrathin ferromagnets [19]
and bio-magnetism [20]. In the present study, a single
NV defect hosted in a diamond nanocrystal is grafted at
the apex of an atomic force microscope (AFM) tip and
scanned across the edge of an uniformly magnetized fer-
romagnetic film [Fig. 2(a)]. At each point of the scan,
the stray field is encoded into a Zeeman shift ∆fNV

of the NV defect ESR frequency, which is well approxi-
mated by ∆fNV =

√
E2 + (γeBNV/2π)2 in the magnetic

field range considered in this work (< 5 mT) [16]. Here
E is the transverse zero-field splitting parameter of the
NV sensor which is typically on the order of few MHz,
γe/2π ≈ 28 GHz/T is the electronic spin gyromagnetic
ratio and BNV is the magnetic field projection along the
NV defect quantization axis uNV, defined by the spherical
angles (θ, φ) in the laboratory frame of reference (x, y, z)
[Fig. 2(a)]. These angles are measured independently by
recording the ESR frequency as a function of the ampli-
tude and orientation of a calibrated magnetic field while
the E parameter is precisely inferred by recording an ESR
spectrum in zero field [17] .

As a first experiment, scanning-NV magnetometry was
used to infer the magnetic moment density in a 1-nm-
thick film of CoFeB with PMA. More precisely, we stud-
ied a multilayer stack of Ta(5 nm)|CoFeB (1 nm)|MgO(2
nm)|Ta(5 nm) deposited by sputtering on a Si/SiO2 sub-
strate [11, 21]. The film was patterned into 1-µm-wide
magnetic wires using e-beam lithography followed by ion
beam etching. The stray field across the magnetic wire
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Figure 3. (a) AFM image and (b) corresponding Zeeman-
shift distribution recorded while scanning an NV center above
a square dot etched in a Ta|CoFeB (1 nm)|MgO film. Scale
bar: 100 nm. (c) Linecut extracted from the white dashed line
in (b) together with the simultaneously recorded topography
of the sample (blue curve). The red solid line is data fitting,
yielding Is = 98± 3 µB/nm

2 and d = 54± 3 nm. (d) Calcu-
lation of the full Zeeman-shift distribution above the square
dot using these parameters. Scale bar: 100 nm.

then reads

Bw(x) = Bed(x)−Bed(x+ w) , (2)

where the field components ofBed(x) are given by Eq. (4)
and w is the wire width [Fig. 2(a)]. Using a wire rather
than a single edge provides a more reliable distance ref-
erence along the x axis, which enables us to correct any
systematic error caused by the calibration of the AFM
scanner. A typical Zeeman-shift profile recorded while
scanning the NV defect through the edges of the wire
is shown in Fig. 2(b) together with the simultaneously
recorded topography of the sample. Here the Zeeman
shift results from the projection of Bw along the NV
axis. Using a NV probe with a different orientation (θ, φ)
therefore leads to a modified Zeeman-shift profile, as il-
lustrated in Fig. 2(c). We note that the dissymmetry
between the field maxima above the two edges is linked
to the topography of the sample and the precise position
of the NV defect with respect to the end of the AFM
tip [11].

The experimental data were then fitted to Eq. (2) with
Is and d as free parameters, while taking into account the
topography of the sample [11]. The results of the fit are
indicated as red solid lines in Figs. 2(b) and (c), show-
ing a very good agreement with experimental data. To
analyze the precision of the fitting procedure, a statis-
tic of the fit outcomes (Is, d) was obtained for each NV

probe by fitting a set of ≈ 20 independent measurements,
leading to a standard deviation smaller than 1%. Uncer-
tainties induced by those on the NV defects characteris-
tics (θ, φ,E) and the magnetic wire geometry (w) were
carefully analyzed by following the method described in
detail in Ref. [22]. This leads to an overall uncertainty
of the fit outcomes (Is, d) on the order of a few percents.
We stress that experiments performed with different NV
probes yield to identical results for Is, which further il-
lustrates the robustness of the method [Figs. 2(b),(c)].
For a 1-nm-thick film of CoFeB with PMA, we obtain
Is = 97 ± 3 µB/nm2. This value is in good agreement
with measurements performed on the same films with
conventional SQUID magnetometry [9].

The main advantage of our approach over existing
methods is the large gain in spatial resolution. Indeed,
by probing the field in close vicinity of the sample, quan-
titative values of Is can be obtained locally as long as the
field maxima above the edges can be spatially resolved.
As shown in Fig. 6, the lateral spread of the stray field is
on the order of d. The further the probe, the wider the
field features, which is clearly visible in Figs. 2 (b) and
(c). The spatial resolution of Is measurement is there-
fore on the order of d, which is the range of 50-100 nm
in this work. This corresponds to an improvement by at
least four orders of magnitude over other existing meth-
ods [9]. We note that in the present work the probe-to-
sample distance d is limited by (i) the size of the diamond
nanocrystal (∼ 50 nm) and (ii) its imperfect positioning
at the apex of the AFM tip [23]. Further improvement
of the spatial resolution down to d ∼ 10 nm could be
achieved by employing a single NV defect hosted in all-
diamond scanning probe tips [24].

Local determination of Is through stray field mapping
is not limited to magnetic samples with a 1D geometry,
like a wire. The method can be easily extended to any
type of nanostructured sample. This is illustrated by
measuring the magnetic moment density of a 2D struc-
ture consisting of a 500-nm-wide square dot etched in a
Ta|CoFeB (1 nm)|MgO film [Fig. 3(a)]. The full Zeeman-
shift distribution recorded above the square dot with a
scanning-NV magnetometer is shown in Fig. 3(b). By
fitting Zeeman-shift linecuts across the square, we in-
fer once again Is = 98 ± 3 µB/nm2. Using this value,
the full distribution was computed showing an excellent
agreement with the experiment [Fig. 3(d)].

As a last experiment, we demonstrate how stray field
imaging with scanning-NV magnetometry can be used
as an efficient tool to analyze the uniformity of Is in
ultrathin ferromagnets with submicron resolution. To
this end, we investigate local modifications of Is in-
duced by light irradiation with He+ ions [Fig. 4(a)].
This method enables precise tuning of PMA and mag-
netization through intermixing at both Ta|CoFeB and
CoFeB|MgO interfaces, and can be adjusted by vary-
ing the irradiation dose [25, 26]. A 1-µm-wide wire of
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Figure 4. (a) Schematic drawing illustrating the decrease in magnetic moment density induced by local irradiation with He+

ions. (b) AFM image of a 1-µm-wide wire of Ta|CoFeB (1 nm)|MgO. The irradiation region is indicated in yellow color between
the black dashed line. (c) Corresponding Zeeman-shift distribution recorded with scanning-NV magnetometry. The NV probe
is characterized by θ = 100◦ and φ = 48◦. Scale bar : 200 nm. (d) Linecuts extracted from the three white dashed lines in
(c). The ratio between the field maxima above the edges directly indicates a relative decrease of Is by ∼ 40% in the irradiated
region. The solid lines are data fitting. (e) Calculation of the full Zeeman-shift distribution above the irradiated wire using the
parameters extracted from the fit. Scale bar : 200 nm.

Ta|CoFeB (1 nm)|MgO was irradiated through a mask
with He+ ions at 15 keV energy with a fluence of
1.6×1015 ions/cm2 [11]. An AFM image of the sample in-
dicating the irradiated area is given in Fig. 4(b), while the
corresponding Zeeman-shift distribution recorded with
scanning-NV magnetometry is shown in Fig. 4(c). Two
important features can be observed. First, a stray field is
generated at the border of the irradiated window along
the long axis (y) of the wire. This indicates an abrupt
variation of Is induced by local irradiation. Second,
the stray field at the edge of the wire is significantly
lower in the irradiated region, corresponding to an over-
all decrease of Is. To get more quantitative informa-
tion, Zeeman-shift linecuts were extracted from the im-
age [Fig. 4(d)]. By fitting the data, we infer a relative
decrease of Is by 40% in the irradiated area. We stress
that for this particular experiment the exact knowledge
of either d or Is is not even required to infer the rela-
tive variation of Is, since it is directly given by the ratio
between the field maxima above the edge of the wire.
The full Zeeman-shift distribution calculated with the
parameters inferred from the fit reproduces very well all
the characteristic features of the measurement [Fig. 4(e)].
From this experiment, we can conclude that the irradia-
tion process uniformly modifies the magnetic properties,
at least on a length scale of ≈ 100 nm corresponding to
the spatial resolution of our measurement.

In conclusion, we have introduced a novel approach
based on quantitative magnetic field imaging to infer lo-

cally and in a very sensitive fashion the magnetic mo-
ment density in ultrathin films with PMA. By employing
a scanning-NV magnetometer, this method leads to ab-
solute measurements of Is with a few percent uncertainty
combined with a spatial resolution below (100 nm)2. This
corresponds to an improvement by more than four orders
of magnitude compared to state-of-the-art techniques [9].
The principle of the method being quite general, it could
be extended to any kind of magnetization pattern by
merely computing different equations used for data fit-
ting. This method opens new perspectives for studying
variations of magnetic properties at the nanoscale.
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SUPPLEMENTARY INFORMATION

Samples

The samples used in this work are stacks of Ta(5)|CoFeB(1)|MgO(2)|Ta(5) deposited on a Si|SiO2(100 nm) substrate
with a PVD Tamaris deposition tool by Singulus Tech (the number in brackets refers to the layer’s thickness, expressed
in nanometers). The stoichiometric composition of the as-deposited CoFeB layer is Co20Fe60B20 for the data of Figs.
2 and 3, and Co40Fe40B20 for the data of Fig. 4. The samples were patterned by e-beam lithography and ion milling
to define magnetic wires (for Figs. 2 and 4) or dots (for Fig. 3). The etching depth δd, comprised typically between 10
and 50 nm, is larger than the depth of the ferromagnetic layer (7 nm), as illustrated in Fig. 5. Finally, a 100-nm-thick
gold stripe was defined using a second step of lithography. This stripe is connected to a microwave generator and
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Figure 5. Schematic cross-section of the sample showing the layer stack and the etching depth δd. The distance between the
NV center and the magnetic layer is denoted d.

serves as an antenna to excite the NV center’s spin resonances. Details about the scanning-NV magnetometry setup
can be found in Ref. [17]

For the experiment described in Fig. 4, the sample was annealed at 300◦C for 2 hours, and a third step of e-beam
lithography was used to open 1-µm-wide windows in a 400-nm-thick PMMA masking layer. The sample was then
irradiated with helium ions, with an irradiation dose F = 1.6 · 1012 ions/cm2 and an energy of 15.5 keV, after which
the PMMA mask was removed.

Derivation of the stray field above an edge of a perpendicularly magnetized film

In this section, we derive the stray field above a semi-infinite layer of a ferromagnetic material with perpendicular
magnetization. The layer lies in the xy plane, has a thickness t in the z direction, and is bounded to the x < 0 half
space, with translation invariance along y. The saturation magnetization is denoted Ms.

As shown in Fig. 6, such a magnetic layer may be seen as a capacitance, with magnetic charges on each surface.
We can therefore make an analogy with electric field and electric charges. The charges are located on two half planes,
one at z = + t

2 and one at z = − t
2 . We thus start by computing a magnetic potential V (P ) created at the point P

by the charge distribution, such that the stray field ~B is defined as the gradient of the potential, ~B = −~∇V . This
potential is given by

V (P ) =
µ0Ms

4π


∫
P ′∈S

+ t
2

dP ′

|~rP ′P |
−
∫
P ′∈S− t

2

dP ′

|~rP ′P |

 ,

where |~rP ′P | is the distance between the point P at which we compute the field and a point P ′ which belongs to the
sample. In the frame of the magnetic layer, with P of coordinates (x, y, z) it reads

V (x, Ay, z) =
µ0Ms

4π

∫ +∞

−∞
dy′
∫ +∞

0

dx′

 1√
(x− x′)2 + y′2 +

(
z − t

2

)2 − 1√
(x− x′)2 + y′2 +

(
z + t

2

)2
 ,

where there is no dependence in y due to the translation symmetry.
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Figure 6. (a) Geometry of the problem. A film of thickness t with a uniform perpendicular magnetization presents an edge at
x = 0. The problem has translation invariance along the y axis, and the origin is taken in the middle of the ferromagnetic layer.
(b) Analogy with electrostatics. The perpendicularly magnetized film can be seen as two planes of magnetic charges, located
at z = ± t

2
. From this charge distribution, one can compute a magnetic scalar potential V (x,Ay, z), from which the magnetic

field is retrieved.

The integration over x′ gives

V (x, z) =

∫ +∞

−∞
dy′

ln


√
x2 + y′2 +

(
z − t

2

)2
+ x√

x2 + y′2 +
(
z + t

2

)2
+ x

− ln

(
y′2 +

(
z − t

2

)2
y′2 +

(
z + t

2

)2
) ,

while the integration over y′ gives eventually

V (x, z) =
µ0Ms

4π

{(
z +

t

2

)[
π + 2 atan

(
x

z + t
2

)]
−
(
z − t

2

)[
π + 2 atan

(
x

z − t
2

)]

+x ln

(
x2 + (z + t

2 )2

x2 + (z − t
2 )2

)}
.

Finally, we obtain the stray field using the formula ~B = −~∇V , which yields
Bed

x (x, z) =
µ0Ms

4π
ln

(
x2 + (z + t

2 )2

x2 + (z − t
2 )2

)
Bed

z (x, z) =
µ0Ms

2π

(
atan

(
x

z + t
2

)
− atan

(
x

z − t
2

)) . (3)

In the thin-film limit z � t, we can simplify these expressions into
Bed

x (x, z) =
µ0Ms

2π

t

z

z2

x2 + z2
+O((t/z)3)

Bed
z (x, z) = −µ0Ms

2π

t

z

xz

x2 + z2
+O((t/z)3)

, (4)

which is Eq. (1) of the main article when the product Mst is replaced by Is and z = d.

Fitting procedure

In this section, we describe the fitting procedure used to retrieve the value of Is in a ferromagnetic wire.
When scanned above a perpendicularly magnetized wire, the NV center feels for each position x a field ~Bw(x). This

field is the contribution from the two edges of the wire and reads in the thin-film approximation

~Bw(x) = − ~Bed(x− xL, z(x)) + ~Bed(x− xR, z(x)) ,

where ~Bed(x, z) is defined by Eq. (4), and xL (xR) is the position of the left (right) edge of the magnetic wire. The
height z at which the field is probed by the NV depends on position x according to the topography followed by the
AFM tip, which resembles a top-hat function. The function z(x) can be expressed as

z(x) = d+ topo(x) ,
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Figure 7. (a) Scheme illustrating the shift between the measured AFM topography, hence the NV center’s trajectory z(x) =
d + topo(x), and the actual sample’s topography, hence the position of the magnetic wire. (d) Example of topo(x) function
measured on a Ta|Co20Fe60B20|MgO wire. For this sample, the etching height is δd ≈ 53 nm.

where d is the average distance between the magnetic layer and the NV center when the AFM tip stands on top of
the magnetic wire, and topo(x) corresponds to the measured topography, with an offset such that{

topo(x) = 0 when the tip stands on the wire

topo(x) = −δd when the tip stands on the substrate
, (5)

where f(x) designates the average over x and δd is the height of the etched wire. As illustrated in Fig. 7a, the
functions z(x) and topo(x) may be shifted in x with respect to the actual sample’s topography, hence with respect to
the magnetic wire, because the NV center may be shifted with respect to the apex of the tip. This is the main reason
for the difference in field amplitude associated with the two edges of the wire (see Fig. 2(b) of the main article), since
the probe height z(x) is in general different for the two edges at x = xL and x = xR. A typical example of the topo(x)
function extracted from AFM data is shown in Fig. 7b.

Note that since the scanners of our AFM are not equipped with position sensors due to volume constraints, and
hence are somewhat imprecise, the topography data topo(x) together with the Zeeman shift data ∆fNV (x) are first
rescaled in order to match the width w and height δd of the magnetic wire as measured by a second, feedback-looped,
calibrated AFM.

To obtain a fit function and compare it to experimental data, the magnetic field ~Bw(x) must be converted into a
Zeeman shift ∆fNV of the ESR frequencies of the NV center. Although it is well approximated in the present case by
∆fNV =

√
E2 + (γeBNV /2π)2, where BNV = ~B · ~uNV is the projection of the magnetic field along the NV axis, we

choose here to perform the exact computation by diagonalizing the Hamiltonian of the S = 1 spin of the NV center

H = hDS2
Z + hE(S2

X − S2
Y ) + h

γe
2π

~B · ~S ,

where D and E are the zero-field splitting parameters of the NV center, h is the Planck constant, γe/2π =

28.03(1) GHz/T is the electron gyromagnetic ratio and ~S is the S = 1 spin operator. The XY Z frame is de-
fined by the crystal orientation of the diamond, with Z being along the axis ~uNV of the defect, which is characterized
by spherical angles (θ, φ) in the xyz lab frame [16 and 17].

The resulting theoretical function ∆fNV (x) is finally fitted to the data using least-squares minimization. The fit
parameters are the stand-off distance d, the magnetic moment density Is, and the positions xL and xR of the two
wire’s edges. The other parameters entering the fit function are the NV center’s parameters (D,E, θ, φ) used in the
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Hamiltonian diagonalization, and the geometrical wire’s parameters (w, δd) used for data rescaling. As mentioned
in the main article and explained in details in Ref. [22], the uncertainties for d and Is are estimated based on the
uncertainties of those six independently measured parameters (D,E, θ, φ, w, δd), as well as on the standard deviation
among a series of measurements.

SUMMARY OF THE RESULTS

The magnetic moment density Is found for the various samples studied in this work are gathered in Ta-
ble I. Note that the value found for the sample irradiated through the PMMA masking layer [Fig. 4 of the
main paper] is significantly smaller than the one reported in Ref. [9] for non-irradiated samples. This is due to
the fact that a 400-nm PMMA layer does not completely block 15.5 keV helium ions, as confirmed by SRIM simulation.

Sample Co20Fe60B20 Co40Fe40B20 Co40Fe40B20 Co40Fe40B20

as deposited as deposited annealed and annealed and
irradiated irradiated through

400-nm PMMA
Is (µB/nm2) 97.7± 3.0 97.8± 1.9 42.5± 2.0 72.9± 2.0

Table I. Value of Is measured with NV magnetometry on different magnetic wires.
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