150 research outputs found

    Dynamics of soap bubble bursting and its implications to volcano acoustics

    Get PDF
    In order to assess the physical mechanisms at stake when giant gas bubbles burst at the top of a magma conduit, laboratory experiments have been performed. An overpressurized gas cavity is initially closed by a thin liquid film, which suddenly bursts. The acoustic signal produced by the bursting is investigated. The key result is that the amplitude and energy of the acoustic signal strongly depend on the film rupture time. As the rupture time is uncontrolled in the experiments and in the field, the measurement of the acoustic excess pressure in the atmosphere, alone, cannot provide any information on the overpressure inside the bubble before explosion. This could explain the low energy partitioning between infrasound, seismic and explosive dynamics often observed on volcanoes

    Creep motion of a model frictional system

    Get PDF
    We report on the dynamics of a model frictional system submitted to minute external perturbations. The system consists of a chain of sliders connected through elastic springs that rest on an incline. By introducing cyclic expansions and contractions of the springs we observe a reptation of the chain. We account for the average reptation velocity theoretically. The velocity of small systems exhibits a series of plateaus as a function of the incline angle. Due to elastic e ects, there exists a critical amplitude below which the reptation is expected to cease. However, rather than a full stop of the creep, we observe in numerical simulations a transition between a continuous-creep and an irregular-creep regime when the critical amplitude is approached. The latter transition is reminiscent of the transition between the continuous and the irregular compaction of granular matter submitted to periodic temperature changes

    Chemo-mechanical characterization of hydrated calcium-hydrosilicates with coupled Raman- and nanoindentation measurements

    Get PDF
    Celitement is a new type of cement that is based on hydraulic calcium-hydrosilicate (hCHS). It is produced by mechanochemical activation of Calcium-Silicate-Hydrates (C-S-H) in a grinding process. Due to the lack of typical clinker minerals, its CaO/SiO_{2} (C/S) ratio can be minimized from above 3 (as in Ordinary Portland Cement) down to 1, which significantly reduces the amount of CO_{2} released during processing. The reaction kinetics of hCHS differs from that of classical clinker phases due to the presence of highly reactive silicate species, which involve silanol groups instead of pure calcium silicates and aluminates and aluminoferrites. In contrast to Portland cement, no calcium hydroxide is formed during hydration, which otherwise regulates the Ca concentration. Without the buffering role of Ca(OH)_{2} the concentration of the dissolved species c(Ca^2+) and c(SiO_{4}^4−) and the corresponding pH must be controlled to ensure a reproducible reaction. Pure hCHS reacts isochemically with water, resulting in a C-S-H phase with the same chemical composition as a single hydration product, with a homogeneous distribution of the main elements Ca and Si throughout the sample. Here we study via nanoindentation tests, the mechanical properties of two different types of hardened pastes made out of Celitement (C/S = 1.28), with varying amounts of hCHS and variable water to cement ratio. We couple nanoindentation grids with Raman mappings to link the nanoscale mechanical properties to individual microstructural components, yielding in-depth insight into the mechanics of the mineralogical phases constituting the hardened cement paste. We show that we can identify in hardened Celitement paste both fresh C-S-H with varying density, and C-S-H from the raw material using their specific Raman spectra, while simultaneously measuring their mechanical properties. Albeit not suitable for phase identification, supplemental EDX measurements provide valuable information about the distribution of alkalis, thus further helping to understand the reaction pattern of hCHS

    Transverse intrafascicular multichannel electrode (TIME) system for treatment of phantom limb pain in amputees

    Get PDF
    International audienceAIM: Phantom limb pain (PLP) develops in the lost limb in 50-80% of amputees. Today, it is not completely understood why the pain occurs, and no effective treatments are available. The favorable effect of electrical stimulation on PLP has been demonstrated. Our aim is to develop a novel system for manipulation of sensations by application of multi-channel microstimulation to the nerve stump of an amputee and explore this method as a treatment for clinched fist PLP (see figure). RESULTS: 1) Electrode design. Non-corrugated TIME electrodes with different dimensions and 8-12 active sites have been manufactued and tested in vivo and in vitro testing in the rat and pig. Methods for corrugated prototypes were developed and the first prototypes were realized. 2) Electrode selectivity modeling. A peripheral nerve model is under development to evaluate the electrode's selective stimulation properties and to optimize electrode design. Simulated currents and neural activity generated were qualitatively assessed using experimental data obtained from rat nerves. 3) Implant modeling. To optimize the implantation procedure, a theoretical peripheral nervous tissue model and a 3D FEM was implemented. Both models closely reproduce the experimental peripheral nervous tissue behaviour and simulate the insertion forces transmitted to the electrode during implantation. 4) Multi-channel stimulators and connectors. A 12-pole prototype, bench-top stimulator has been implemented and successfully tested in animal experiments. A high-count, implantable connector between stimulator and electrode has been designed. 5) Biocompatibility. Electrode materials were evaluated and did not induce immune rejection and significant inflammatory reaction after in vivo implantation in the rat. Electrode implantation will require an understanding of the fascicular characteristics of the target nerve. Morphological characteristics of the rat, pig and human nerves are currently evaluated and compared. 6) Animal testing. First TIME electrodes test were carried out in the acute rat and acute pig. Results indicated selective stimulation of different fascicles with graded recruitment. 7) Clinical evaluation: To quantify the location of artificially evoked sensations and evaluate the strength of artificially evoked sensations a psychophysical testing platform is under development. Main inclusion criteria for patient recruitment have been identified and protocols have been defined. CONCLUSION: The feasibility of the corrugated version of the TIME electrode has yet to be explored. Further work designing, optimizing and testing the TIME electrode and all technological developments will be carried out including theoretical stimulations and animal experimental work before the optimal electrode for human implant will be chosen

    Bringing sensation to prosthetic hands—chronic assessment of implanted thin-film electrodes in humans

    Get PDF
    Direct stimulation of peripheral nerves with implantable electrodes successfully provided sensory feedback to amputees while using hand prostheses. Longevity of the electrodes is key to success, which we have improved for the polyimide-based transverse intrafascicular multichannel electrode (TIME). The TIMEs were implanted in the median and ulnar nerves of three trans-radial amputees for up to six months. We present a comprehensive assessment of the electrical properties of the thin-film metallization as well as material status post explantationem. The TIMEs stayed within the electrochemical safe limits while enabling consistent and precise amplitude modulation. This lead to a reliable performance in terms of eliciting sensation. No signs of corrosion or morphological change to the thin-film metallization of the probes was observed by means of electrochemical and optical analysis. The presented longevity demonstrates that thin-film electrodes are applicable in permanent implant systems

    Interplay between elastic instabilities and shear-banding: three categories of Taylor–Couette flows and beyond

    Get PDF
    In the past twenty years, shear-banding flows have been probed by various techniques, such as rheometry, velocimetry and flow birefringence. In micellar solutions, many of the data collected exhibit unexplained spatiotemporal fluctuations. Recently, it has been suggested that those fluctuations originate from a purely elastic instability of the shear-banding flow. In cylindrical Couette geometry, the instability is reminiscent of the Taylor-like instability observed in viscoelastic polymer solutions. The criterion for purely elastic Taylor–Couette instability adapted to shear-banding flows suggested three categories of shear-banding depending on their stability. In the present study, we report on a large set of experimental data which demonstrates the existence of the three categories of shear-banding flows in various surfactant solutions. Consistent with theoretical predictions, increases in the surfactant concentration or in the curvature of the geometry destabilize the flow, whereas an increase in temperature stabilizes the flow. However, experiments also exhibit some interesting behaviors going beyond the purely elastic instability criterion.National Science Foundation (U.S.). Graduate Research Fellowship Progra

    Rheo-PIV of a shear-banding wormlike micellar solution under large amplitude oscillatory shear

    Get PDF
    We explore the behavior of a wormlike micellar solution under both steady and large amplitude oscillatory shear (LAOS) in a cone–plate geometry through simultaneous bulk rheometry and localized velocimetric measurements. First, particle image velocimetry is used to show that the shear-banded profiles observed in steady shear are in qualitative agreement with previous results for flow in the cone–plate geometry. Then under LAOS, we observe the onset of shear-banded flow in the fluid as it is progressively deformed into the non-linear regime—this onset closely coincides with the appearance of higher harmonics in the periodic stress signal measured by the rheometer. These harmonics are quantified using the higher-order elastic and viscous Chebyshev coefficients e [subscript n] and v [subscript n] , which are shown to grow as the banding behavior becomes more pronounced. The high resolution of the velocimetric imaging system enables spatiotemporal variations in the structure of the banded flow to be observed in great detail. Specifically, we observe that at large strain amplitudes (γ [subscript 0] ≥ 1), the fluid exhibits a three-banded velocity profile with a high shear rate band located in-between two lower shear rate bands adjacent to each wall. This band persists over the full cycle of the oscillation, resulting in no phase lag being observed between the appearance of the band and the driving strain amplitude. In addition to the kinematic measurements of shear banding, the methods used to prevent wall slip and edge irregularities are discussed in detail, and these methods are shown to have a measurable effect on the stability boundaries of the shear-banded flow.Spain. Ministerio de Educación y Ciencia (MEC) (Project FIS2010-21924-C02-02

    TGFbeta Family Members Are Key Mediators in the Induction of Myofibroblast Phenotype of Human Adipose Tissue Progenitor Cells by Macrophages

    Get PDF
    International audienceOBJECTIVE: The present study was undertaken to characterize the remodeling phenotype of human adipose tissue (AT) macrophages (ATM) and to analyze their paracrine effects on AT progenitor cells. RESEARCH DESIGN AND METHODS: The phenotype of ATM, immunoselected from subcutaneous (Sc) AT originating from subjects with wide range of body mass index and from paired biopsies of Sc and omental (Om) AT from obese subjects, was studied by gene expression analysis in the native and activated states. The paracrine effects of ScATM on the phenotype of human ScAT progenitor cells (CD34(+)CD31(-)) were investigated. RESULTS: Two main ATM phenotypes were distinguished based on gene expression profiles. For ScAT-derived ATM, obesity and adipocyte-derived factors favored a pro-fibrotic/remodeling phenotype whereas the OmAT location and hypoxic culture conditions favored a pro-angiogenic phenotype. Treatment of native human ScAT progenitor cells with ScATM-conditioned media induced the appearance of myofibroblast-like cells as shown by expression of both α-SMA and the transcription factor SNAIL, an effect mimicked by TGFβ1 and activinA. Immunohistochemical analyses showed the presence of double positive α-SMA and CD34 cells in the stroma of human ScAT. Moreover, the mRNA levels of SNAIL and SLUG in ScAT progenitor cells were higher in obese compared with lean subjects. CONCLUSIONS: Human ATM exhibit distinct pro-angiogenic and matrix remodeling/fibrotic phenotypes according to the adiposity and the location of AT, that may be related to AT microenvironment including hypoxia and adipokines. Moreover, human ScAT progenitor cells have been identified as target cells for ScATM-derived TGFβ and as a potential source of fibrosis through their induction of myofibroblast-like cells
    corecore