274 research outputs found

    Faster evaluation of induced floral sterility in transgenic early flowering poplar

    Get PDF
    A major concern over the use of transgenic trees is the potential for transgene dispersal through pollen and seeds. The incorporation of sterility inducing genes into transgenic lines of trees has been proposed to reduce or even avoid gene flow of transgenes into non-transgenic interbreeding species. The evaluation of strategies for the induction of sterility in transgenic forest tree species has been hindered by their long vegetative phases. In this study an early flowering 35

    Genome-wide association analysis of the anthocyanin and carotenoid contents of rose petals

    Get PDF
    Petal color is one of the key characteristics determining the attractiveness and therefore the commercial value of an ornamental crop. Here, we present the first genome-wide association study for the important ornamental crop rose, focusing on the anthocyanin and carotenoid contents in petals of 96 diverse tetraploid garden rose genotypes. Cultivated roses display a vast phenotypic and genetic diversity and are therefore ideal targets for association genetics. For marker analysis, we used a recently designed Axiom SNP chip comprising 68,000 SNPs with additionally 281 SSRs, 400 AFLPs and 246 markers from candidate genes. An analysis of the structure of the rose population revealed three subpopulations with most of the genetic variation between individual genotypes rather than between clusters and with a high average proportion of heterozygous loci. The mapping of markers significantly associated with anthocyanin and carotenoid content to the related Fragaria and Prunus genomes revealed clusters of associated markers indicating five genomic regions associated with the total anthocyanin content and two large clusters associated with the carotenoid content. Among the marker clusters associated with the phenotypes, we found several candidate genes with known functions in either the anthocyanin or the carotenoid biosynthesis pathways. Among others, we identified a glutathione-S-transferase, 4CL, an auxin response factor and F3’H as candidate genes affecting anthocyanin concentration, and CCD4 and Zeaxanthine epoxidase as candidates affecting the concentration of carotenoids. These markers are starting points for future validation experiments in independent populations as well as for functional genomic studies to identify the causal factors for the observed color phenotypes. Furthermore, validated markers may be interesting tools for marker-assisted selection in commercial breeding programmes in that they provide the tools to identify superior parental combinations that combine several associated markers in higher dosages.BMWi/ZI

    Identification of superior reference genes for data normalisation of expression studies via quantitative PCR in hybrid roses (Rosa hybrida)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Gene expression studies are a prerequisite for understanding the biological function of genes. Because of its high sensitivity and easy use, quantitative PCR (qPCR) has become the gold standard for gene expression quantification. To normalise qPCR measurements between samples, the most prominent technique is the use of stably expressed endogenous control genes, the so called reference genes. However, recent studies show there is no universal reference gene for all biological questions. Roses are important ornamental plants for which there has been no evaluation of useful reference genes for gene expression studies.</p> <p>Results</p> <p>We used three different algorithms (BestKeeper, geNorm and NormFinder) to validate the expression stability of nine candidate reference genes in different rose tissues from three different genotypes of <it>Rosa hybrida </it>and in leaves treated with various stress factors. The candidate genes comprised the classical "housekeeping genes" (<it>Actin, EF-1α, GAPDH</it>, <it>Tubulin </it>and <it>Ubiquitin</it>), and genes showing stable expression in studies in <it>Arabidopsis </it>(<it>PP2A, SAND, TIP </it>and <it>UBC</it>). The programs identified no single gene that showed stable expression under all of the conditions tested, and the individual rankings of the genes differed between the algorithms. Nevertheless the new candidate genes, specifically, <it>PP2A </it>and <it>UBC</it>, were ranked higher as compared to the other traditional reference genes. In general, <it>Tubulin </it>showed the most variable expression and should be avoided as a reference gene.</p> <p>Conclusions</p> <p>Reference genes evaluated as suitable in experiments with <it>Arabidopsis thaliana </it>were stably expressed in roses under various experimental conditions. In most cases, these genes outperformed conventional reference genes, such as <it>EF1-α </it>and <it>Tubulin</it>. We identified <it>PP2A</it>, <it>SAND </it>and <it>UBC </it>as suitable reference genes, which in different combinations may be used for normalisation in expression analyses via qPCR for different rose tissues and stress treatments. However, the vast genetic variation found within the genus <it>Rosa</it>, including differences in ploidy levels, might also influence expression stability of reference genes, so that future research should also consider different genotypes and ploidy levels.</p

    In the name of the rose: a roadmap for rose research in the genome era

    Get PDF
    The recent completion of the rose genome sequence is not the end of a process, but rather a starting point that opens up a whole set of new and exciting activities. Next to a high-quality genome sequence other genomic tools have also become available for rose, including transcriptomics data, a high-density single-nucleotide polymorphism array and software to perform linkage and quantitative trait locus mapping in polyploids. Rose cultivars are highly heterogeneous and diverse. This vast diversity in cultivated roses can be explained through the genetic potential of the genus, introgressions from wild species into commercial tetraploid germplasm and the inimitable efforts of historical breeders. We can now investigate how this diversity can best be exploited and refined in future breeding work, given the rich molecular toolbox now available to the rose breeding community. This paper presents possible lines of research now that rose has entered the genomics era, and attempts to partially answer the question that arises after the completion of any draft genome sequence: ‘Now that we have “the” genome, what’s next?’. Having access to a genome sequence will allow both (fundamental) scientific and (applied) breeding-orientated questions to be addressed. We outline possible approaches for a number of these questions

    EEG-fMRI Based Information Theoretic Characterization of the Human Perceptual Decision System

    Get PDF
    The modern metaphor of the brain is that of a dynamic information processing device. In the current study we investigate how a core cognitive network of the human brain, the perceptual decision system, can be characterized regarding its spatiotemporal representation of task-relevant information. We capitalize on a recently developed information theoretic framework for the analysis of simultaneously acquired electroencephalography (EEG) and functional magnetic resonance imaging data (fMRI) (Ostwald et al. (2010), NeuroImage 49: 498–516). We show how this framework naturally extends from previous validations in the sensory to the cognitive domain and how it enables the economic description of neural spatiotemporal information encoding. Specifically, based on simultaneous EEG-fMRI data features from n = 13 observers performing a visual perceptual decision task, we demonstrate how the information theoretic framework is able to reproduce earlier findings on the neurobiological underpinnings of perceptual decisions from the response signal features' marginal distributions. Furthermore, using the joint EEG-fMRI feature distribution, we provide novel evidence for a highly distributed and dynamic encoding of task-relevant information in the human brain

    A high-quality sequence of Rosa chinensis to elucidate genome structure and ornamental traits

    Get PDF
    Rose is the worlds most important ornamental plant with economic, cultural and symbolic value. Roses are cultivated worldwide and sold as garden roses, cut flowers and potted plants. Rose has a complex genome with high heterozygosity and various ploidy levels. Our objectives were (i) to develop the first high-quality reference genome sequence for the genus Rosa by sequencing a doubled haploid, combining long and short read sequencing, and anchoring to a high-density genetic map and (ii) to study the genome structure and the genetic basis of major ornamental traits. We produced a haploid rose line from R. chinensis "Old Blush" and generated the first rose genome sequence at the pseudo-molecule scale (512 Mbp with N50 of 3.4 Mb and L75 of 97). The sequence was validated using high-density diploid and tetraploid genetic maps. We delineated hallmark chromosomal features including the pericentromeric regions through annotation of TE families and positioned centromeric repeats using FISH. Genetic diversity was analysed by resequencing eight Rosa species. Combining genetic and genomic approaches, we identified potential genetic regulators of key ornamental traits, including prickle density and number of flower petals. A rose APETALA2 homologue is proposed to be the major regulator of petals number in rose. This reference sequence is an important resource for studying polyploidisation, meiosis and developmental processes as we demonstrated for flower and prickle development. This reference sequence will also accelerate breeding through the development of molecular markers linked to traits, the identification of the genes underlying them and the exploitation of synteny across Rosaceae

    NeuroPlace: categorizing urban places according to mental states

    Get PDF
    Urban spaces have a great impact on how people’s emotion and behaviour. There are number of factors that impact our brain responses to a space. This paper presents a novel urban place recommendation approach, that is based on modelling in-situ EEG data. The research investigations leverages on newly affordable Electroencephalogram (EEG) headsets, which has the capability to sense mental states such as meditation and attention levels. These emerging devices have been utilized in understanding how human brains are affected by the surrounding built environments and natural spaces. In this paper, mobile EEG headsets have been used to detect mental states at different types of urban places. By analysing and modelling brain activity data, we were able to classify three different places according to the mental state signature of the users, and create an association map to guide and recommend people to therapeutic places that lessen brain fatigue and increase mental rejuvenation. Our mental states classifier has achieved accuracy of (%90.8). NeuroPlace breaks new ground not only as a mobile ubiquitous brain monitoring system for urban computing, but also as a system that can advise urban planners on the impact of specific urban planning policies and structures. We present and discuss the challenges in making our initial prototype more practical, robust, and reliable as part of our on-going research. In addition, we present some enabling applications using the proposed architecture

    Neural and behavioral traces of error awareness

    Get PDF
    Monitoring for errors and behavioral adjustments after errors are essential for daily life. A question that has not been addressed systematically yet, is whether consciously perceived errors lead to different behavioral adjustments compared to unperceived errors. Our goal was to develop a task that would enable us to study different commonly observed neural correlates of error processing and post-error adjustments in their relation to error awareness and accuracy confidence in a single experiment. We assessed performance in a new number judgement error awareness task in 70 participants. We used multiple, robust, single-trial EEG regressions to investigate the link between neural correlates of error processing (e.g., error-related negativity (ERN) and error positivity (Pe)) and error awareness. We found that only aware errors had a slowing effect on reaction times in consecutive trials, but this slowing was not accompanied by post-error increases in accuracy. On a neural level, error awareness and confidence had a modulating effect on both the ERN and Pe, whereby the Pe was most predictive of participants’ error awareness. Additionally, we found partial support for a mediating role of error awareness on the coupling between the ERN and behavioral adjustments in the following trial. Our results corroborate previous findings that show both an ERN/Pe and a post-error behavioral adaptation modulation by error awareness. This suggests that conscious error perception can support meta-control processes balancing the recruitment of proactive and reactive control. Furthermore, this study strengthens the role of the Pe as a robust neural index of error awareness

    Donepezil Impairs Memory in Healthy Older Subjects: Behavioural, EEG and Simultaneous EEG/fMRI Biomarkers

    Get PDF
    Rising life expectancies coupled with an increasing awareness of age-related cognitive decline have led to the unwarranted use of psychopharmaceuticals, including acetylcholinesterase inhibitors (AChEIs), by significant numbers of healthy older individuals. This trend has developed despite very limited data regarding the effectiveness of such drugs on non-clinical groups and recent work indicates that AChEIs can have negative cognitive effects in healthy populations. For the first time, we use a combination of EEG and simultaneous EEG/fMRI to examine the effects of a commonly prescribed AChEI (donepezil) on cognition in healthy older participants. The short- and long-term impact of donepezil was assessed using two double-blind, placebo-controlled trials. In both cases, we utilised cognitive (paired associates learning (CPAL)) and electrophysiological measures (resting EEG power) that have demonstrated high-sensitivity to age-related cognitive decline. Experiment 1 tested the effects of 5 mg/per day dosage on cognitive and EEG markers at 6-hour, 2-week and 4-week follow-ups. In experiment 2, the same markers were further scrutinised using simultaneous EEG/fMRI after a single 5 mg dose. Experiment 1 found significant negative effects of donepezil on CPAL and resting Alpha and Beta band power. Experiment 2 replicated these results and found additional drug-related increases in the Delta band. EEG/fMRI analyses revealed that these oscillatory differences were associated with activity differences in the left hippocampus (Delta), right frontal-parietal network (Alpha), and default-mode network (Beta). We demonstrate the utility of simple cognitive and EEG measures in evaluating drug responses after acute and chronic donepezil administration. The presentation of previously established markers of age-related cognitive decline indicates that AChEIs can impair cognitive function in healthy older individuals. To our knowledge this is the first study to identify the precise neuroanatomical origins of EEG drug markers using simultaneous EEG/fMRI. The results of this study may be useful for evaluating novel drugs for cognitive enhancement

    Aging and Error Processing: Age Related Increase in the Variability of the Error-Negativity Is Not Accompanied by Increase in Response Variability

    Get PDF
    Background: Several studies report an amplitude reduction of the error negativity (Ne or ERN), an event-related potential occurring after erroneous responses, in older participants. In earlier studies it was shown that the Ne can be explained by a single independent component. In the present study we aimed to investigate whether the Ne reduction usually found in older subjects is due to an altered component structure, i.e., a true alteration in response monitoring in older subjects. Methodology/Principal Findings: Two age groups conducted two tasks with different stimulus response mappings and task difficulty. Both groups received fully balanced speed or accuracy instructions and an individually adapted deadline in both tasks. Event-related potentials, Independent Component analysis of EEG-data and between trial variability of the Ne were combined with analysis of error rates, coefficients of variation of RT-data and ex-Gaussian fittings to reaction times. The Ne was examined by means of ICA and PCA, yielding a prominent independent component on error trials, the Ne-IC. The Ne-IC was smaller in the older than the younger subjects for both speed and accuracy instructions. Also, the Ne-IC contributed to a much lesser extent to the Ne in older than in younger subjects. RT distribution parameters were not related to Ne/ERP-variability. Conclusions/Significance: The results show a genuine reduction as well as a different component structure of the Ne in older compared to young subjects. This reduction is not reflected in behaviour, apart from a general slowing of olde
    corecore