112 research outputs found

    Emergency management in health: key issues and challenges in the UK

    Get PDF
    Background Emergency planning in the UK has grown considerably in recent years, galvanised by the threat of terrorism. However, deficiencies in NHS emergency planning were identified and the evidence-base that underpins it is questionable. Inconsistencies in terminologies and concepts also exist. Different models of emergency management exist internationally but the optimal system is unknown. This study examines the evidence-base and evidence requirements for emergency planning in the UK health context. Methods The study involved semi-structured interviews with key stakeholders and opinion leaders. Purposive sampling was used to obtain a breadth of views from various agencies involved in emergency planning and response. Interviews were then analysed using a grounded approach using standard framework analysis techniques. Results We conducted 17 key informant interviews. Interviewees identified greater gaps in operational than technical aspects of emergency planning. Social and behavioural knowledge gaps were highlighted with regards to how individuals and organisations deal with risk and behave in emergencies. Evidence-based approaches to public engagement and for developing community resilience to disasters are lacking. Other gaps included how knowledge was developed and used. Conflicting views with regards to the optimal configuration and operation of the emergency management system were voiced. Conclusions Four thematic categories for future research emerged: (i) Knowledge-base for emergency management: Further exploration is needed of how knowledge is acquired, valued, disseminated, adopted and retained. (ii) Social and behavioural issues: Greater understanding of how individuals approach risk and behave in emergencies is required. (iii) Organisational issues in emergencies: Several conflicting organisational issues were identified; value of planning versus plans, flexible versus standardized procedures, top-down versus bottom-up engagement, generic versus specific planning, and reactive versus proactive approaches to emergencies. (iv) Emergency management system: More study is required of system-wide issues relating to system configuration and operation, public engagement, and how emergency planning is assessed

    Changes in nuclear structure along the Mn isotopic chain studied via charge radii.

    Get PDF
    The hyperfine spectra of Mn-51,Mn-53-64 were measured in two experimental runs using collinear laser spectroscopy at ISOLDE, CERN. Laser spectroscopy was performed on the atomic 3d(5) 4s(2) S-6(5/2) -> 3d(5) 4s4p P-6(3/2) and ionic 3d(5) 4s S-5(2) -> 3d(5) 4p P-5(3) transitions, yielding two sets of isotope shifts. The mass and field shift factors for both transitions have been calculated in the multiconfiguration Dirac-Fock framework and were combined with a King plot analysis in order to obtain a consistent set of mean-square charge radii which, together with earlier work on neutron-deficient Mn, allow the study of nuclear structure changes from N = 25 across N = 28 up to N = 39. A clear development of deformation is observed towards N = 40, confirming the conclusions of the nuclear moments studies. From a Monte Carlo shell-model study of the shape in the Mn isotopic chain, it is suggested that the observed development of deformation is not only due to an increase in static prolate deformation but also due to shape fluctuations and triaxiality. The changes in mean-square charge radii are well reproduced using the Duflo-Zuker formula except in the case of large deformation

    High-resolution and low-background 163^{163}Ho spectrum: interpretation of the resonance tails

    Get PDF
    The determination of the effective electron neutrino mass via kinematic analysis of beta and electron capture spectra is considered to be model-independent since it relies on energy and momentum conservation. At the same time the precise description of the expected spectrum goes beyond the simple phase space term. In particular for electron capture processes, many-body electron-electron interactions lead to additional structures besides the main resonances in calorimetrically measured spectra. A precise description of the 163^{163}Ho spectrum is fundamental for understanding the impact of low intensity structures at the endpoint region where a finite neutrino mass affects the shape most strongly. We present a low-background and high-energy resolution measurement of the 163^{163}Ho spectrum obtained in the framework of the ECHo experiment. We study the line shape of the main resonances and multiplets with intensities spanning three orders of magnitude. We discuss the need to introduce an asymmetric line shape contribution due to Auger–Meitner decay of states above the auto-ionisation threshold. With this we determine an enhancement of count rate at the endpoint region of about a factor of 2, which in turn leads to an equal reduction in the required exposure of the experiment to achieve a given sensitivity on the effective electron neutrino mass

    Characterization of the shape-staggering effect in mercury nuclei

    Get PDF
    In rare cases, the removal of a single proton (Z) or neutron (N) from an atomic nucleus leads to a dramatic shape change. These instances are crucial for understanding the components of the nuclear interactions that drive deformation. The mercury isotopes (Z = 80) are a striking example1,2: their close neighbours, the lead isotopes (Z = 82), are spherical and steadily shrink with decreasing N. The even-mass (A = N + Z) mercury isotopes follow this trend. The odd-mass mercury isotopes 181,183,185Hg, however, exhibit noticeably larger charge radii. Due to the experimental difficulties of probing extremely neutron-deficient systems, and the computational complexity of modelling such heavy nuclides, the microscopic origin of this unique shape staggering has remained unclear. Here, by applying resonance ionization spectroscopy, mass spectrometry and nuclear spectroscopy as far as 177Hg, we determine 181Hg as the shape-staggering endpoint. By combining our experimental measurements with Monte Carlo shell model calculations, we conclude that this phenomenon results from the interplay between monopole and quadrupole interactions driving a quantum phase transition, for which we identify the participating orbitals. Although shape staggering in the mercury isotopes is a unique and localized feature in the nuclear chart, it nicely illustrates the concurrence of single-particle and collective degrees of freedom at play in atomic nuclei

    The electron capture in 163^{163}Ho experiment – ECHo

    Get PDF
    Neutrinos, and in particular their tiny but non-vanishing masses, can be considered one of the doors towards physics beyond the Standard Model. Precision measurements of the kinematics of weak interactions, in particular of the 3^{3}H β-decay and the 163^{163}Ho electron capture (EC), represent the only model independent approach to determine the absolute scale of neutrino masses. The electron capture in 163^{163}Ho experiment, ECHo, is designed to reach sub-eV sensitivity on the electron neutrino mass by means of the analysis of the calorimetrically measured electron capture spectrum of the nuclide 163^{163}Ho. The maximum energy available for this decay, about 2.8 keV, constrains the type of detectors that can be used. Arrays of low temperature metallic magnetic calorimeters (MMCs) are being developed to measure the 163^{163}Ho EC spectrum with energy resolution below 3 eV FWHM and with a time resolution below 1 μs. To achieve the sub-eV sensitivity on the electron neutrino mass, together with the detector optimization, the availability of large ultra-pure 163^{163}Ho samples, the identification and suppression of background sources as well as the precise parametrization of the 163^{163}Ho EC spectrum are of utmost importance. The high-energy resolution 163^{163}Ho spectra measured with the first MMC prototypes with ion-implanted 163^{163}Ho set the basis for the ECHo experiment. We describe the conceptual design of ECHo and motivate the strategies we have adopted to carry on the present medium scale experiment, ECHo-1K. In this experiment, the use of 1 kBq 163^{163}Ho will allow to reach a neutrino mass sensitivity below 10 eV/c2^{2}. We then discuss how the results being achieved in ECHo-1k will guide the design of the next stage of the ECHo experiment, ECHo-1M, where a source of the order of 1 MBq 163^{163}Ho embedded in large MMCs arrays will allow to reach sub-eV sensitivity on the electron neutrino mass
    corecore