256 research outputs found

    Vancomycin-resistant enterococci from nosocomial, community, and animal sources in the United States.

    Get PDF

    Vancomycin-resistant enterococci from nosocomial, community, and animal sources in the United States.

    Get PDF
    The presence of vancomycin-resistant enterococci (VRE) was looked for in fecal samples from 104 healthy volunteers (3 with hospital exposure), 100 selected hospitalized patients, and various environmental sources (44 commercial chickens, 5 farm-raised chickens, 3 turkeys, and 2 chicken farm lagoon slurries). Five probiotic preparations were also studied. No VRE with vanA or vanB genes were isolated from the healthy volunteers without hospital exposure, environmental sources, or probiotic preparations. VRE with vanB were found in the stools of 16% of the high-risk hospitalized patients and in one volunteer with hospital contact. All VRE examined could be classified into one of two clones by pulsed-field gel electrophoresis. VRE from 11 of the colonized patients were quantified and ranged from 10(3) to 10(6) CFU/g of stool. This study, in contrast to findings in Europe, failed to find evidence of VanA- or VanB-type VRE in the community or environmental sources in Houston, Texas, and suggests that these settings are not a likely source of VRE in hospitals in this geographic area

    Detección de secuencias tipo (ST) por multilocus sequence typing (MLST) en <i>enterococcus faecalis</i> aislados de pacientes hospitalizados en Argentina

    Get PDF
    Enterococcus spp. es reconocido en la actualidad como un patógeno hospitalario cuya frecuencia de aislamiento es cada vez mayor a nivel mundial. Este género se caracteriza por poseer multirresistencia (MR) antimicrobiana que puede ser intrínseca ó adquirida por mecanismos de transferencia horizontal de genes. E. faecalis es la especie mas frecuentemente recuperada de infecciones asociadas al cuidado de la salud (IACS) y extrahospitalarias. Las infecciones que produce pueden ser endógenas o exógenas, siendo esta última de importancia en el origen y agravamiento de las IACS, debido a la diseminación de clones evolucionados de E. faecalis con MR y con capacidad de invasión. Multilocus Sequence Typing (MLST) es un método molecular basado en la identificación de alelos de secuencias de genes del metabolismo bacteriano (genes housekeeping). Permite identificar clones y/o líneas clonales, permitiendo investigar los linajes genéticos fundamentalmente en poblaciones bacterianas. Es una herramienta de gran utilidad para determinar la epidemiología bacteriana local y global, la estructura poblacional de cepas circulantes intrahospitalarias, para caracterizar brotes y para conocer líneas clonales hipervirulentas, entre otras cosas.Facultad de Ciencias Médica

    Fine-mapping of qRL6.1, a major QTL for root length of rice seedlings grown under a wide range of NH4+ concentrations in hydroponic conditions

    Get PDF
    Root system development is an important target for improving yield in cereal crops. Active root systems that can take up nutrients more efficiently are essential for enhancing grain yield. In this study, we attempted to identify quantitative trait loci (QTL) involved in root system development by measuring root length of rice seedlings grown in hydroponic culture. Reliable growth conditions for estimating the root length were first established to renew nutrient solutions daily and supply NH4+ as a single nitrogen source. Thirty-eight chromosome segment substitution lines derived from a cross between ‘Koshihikari’, a japonica variety, and ‘Kasalath’, an indica variety, were used to detect QTL for seminal root length of seedlings grown in 5 or 500 μM NH4+. Eight chromosomal regions were found to be involved in root elongation. Among them, the most effective QTL was detected on a ‘Kasalath’ segment of SL-218, which was localized to the long-arm of chromosome 6. The ‘Kasalath’ allele at this QTL, qRL6.1, greatly promoted root elongation under all NH4+ concentrations tested. The genetic effect of this QTL was confirmed by analysis of the near-isogenic line (NIL) qRL6.1. The seminal root length of the NIL was 13.5–21.1% longer than that of ‘Koshihikari’ under different NH4+ concentrations. Toward our goal of applying qRL6.1 in a molecular breeding program to enhance rice yield, a candidate genomic region of qRL6.1 was delimited within a 337 kb region in the ‘Nipponbare’ genome by means of progeny testing of F2 plants/F3 lines derived from a cross between SL-218 and ‘Koshihikari’

    Global dissemination of a multidrug resistant Escherichia coli clone.

    Get PDF
    Escherichia coli sequence type 131 (ST131) is a globally disseminated, multidrug resistant (MDR) clone responsible for a high proportion of urinary tract and bloodstream infections. The rapid emergence and successful spread of E. coli ST131 is strongly associated with several factors, including resistance to fluoroquinolones, high virulence gene content, the possession of the type 1 fimbriae FimH30 allele, and the production of the CTX-M-15 extended spectrum β-lactamase (ESBL). Here, we used genome sequencing to examine the molecular epidemiology of a collection of E. coli ST131 strains isolated from six distinct geographical locations across the world spanning 2000-2011. The global phylogeny of E. coli ST131, determined from whole-genome sequence data, revealed a single lineage of E. coli ST131 distinct from other extraintestinal E. coli strains within the B2 phylogroup. Three closely related E. coli ST131 sublineages were identified, with little association to geographic origin. The majority of single-nucleotide variants associated with each of the sublineages were due to recombination in regions adjacent to mobile genetic elements (MGEs). The most prevalent sublineage of ST131 strains was characterized by fluoroquinolone resistance, and a distinct virulence factor and MGE profile. Four different variants of the CTX-M ESBL-resistance gene were identified in our ST131 strains, with acquisition of CTX-M-15 representing a defining feature of a discrete but geographically dispersed ST131 sublineage. This study confirms the global dispersal of a single E. coli ST131 clone and demonstrates the role of MGEs and recombination in the evolution of this important MDR pathogen

    Rectal Carriage of Extended-Spectrum Beta-Lactamase-Producing Gram-Negative Bacilli in Community Settings in Madagascar

    Get PDF
    BACKGROUND: Extended-spectrum ß-lactamase-producing Enterobacteria (ESBL-PE) emerged at the end of the 1980s, causing nosocomial outbreaks and/or hyperendemic situations in hospitals and long-term care facilities. In recent years, community-acquired infections due to ESBL-PE have spread worldwide, especially across developing countries including Madagascar. OBJECTIVES: This study aimed to determine the prevalence and risk factors of intestinal carriage of ESBL-PE in the community of Antananarivo. METHODS: Non-hospitalized patients were recruited in three health centers in different socio economic settings. Fresh stool collected were immediately plated on Drigalski agar containing 3 mg/liter of ceftriaxone. Gram-negative bacilli species were identified and ESBL production was tested by a double disk diffusion (cefotaxime and ceftazidime +/- clavulanate) assay. Characterization of ESBLs were perfomed by PCR and direct sequencing . Molecular epidemiology was analysed by Rep-PCR and ERIC-PCR. RESULTS: 484 patients were screened (sex ratio  = 1.03, median age 28 years). 53 ESBL-PE were isolated from 49 patients (carrier rate 10.1%). The isolates included Escherichia coli (31), Klebsiella pneumoniae (14), Enterobacter cloacae (3), Citrobacter freundii (3), Kluyvera spp. (1) and Pantoae sp.(1). In multivariate analysis, only the socioeconomic status of the head of household was independently associated with ESBL-PE carriage, poverty being the predominant risk factor. CONCLUSIONS: The prevalence of carriage of ESBL in the community of Antananarivo is one of the highest reported worldwide. This alarming spread of resistance genes should be stopped urgently by improving hygiene and streamlining the distribution and consumption of antibiotics

    Prevalence of putative virulence factors and antimicrobial susceptibility of Enterococcus faecalis isolates from patients with dental Diseases

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This study investigated the prevalence of <it>Enterococcus faecalis</it>, its putative virulence factors and antimicrobial susceptibility in individuals with and without dental diseases. A total of 159 oral rinse specimens were collected from patients (n = 109) suffering from dental diseases and healthy controls (n = 50).</p> <p>Results</p> <p><it>E. faecalis </it>was detected using only culture in 8/109 (7.3%) of the patients with various types of dental diseases, whereas no <it>E. faecalis </it>was found in the healthy controls weather using both culture and PCR. Phenotype characterizations of the 8 <it>E. faecalis </it>isolates indicated that 25% of the isolates produced haemolysin and 37.5% produced gelatinase. Most important virulence genes; collagen binding protein (<it>ace</it>) and endocarditis antigen (<it>efaA</it>) were present in all 8 <it>E. faecalis </it>isolates, while haemolysin activator gene (<it>cylA</it>) was detected only in 25% of isolates, and all isolates were negative for <it>esp </it>gene. All <it>E. faecalis </it>isolates were 100% susceptible to ampicillin, chloramphenicol, ciprofloxacin, vancomycin, and teicoplanin, and to less extent to erythromycin (62.5%).</p> <p>Conclusion</p> <p>This study shows that all <it>E. faecalis </it>isolates were recovered only from patients with dental diseases especially necrotic pulps, and all isolates carried both collagen binding protein and endocarditis antigen genes and highly susceptible to frequently used antimicrobial drugs in Jordan.</p

    Antibiotic Resistance Genes in the Bacteriophage DNA Fraction of Environmental Samples

    Get PDF
    Antibiotic resistance is an increasing global problem resulting from the pressure of antibiotic usage, greater mobility of the population, and industrialization. Many antibiotic resistance genes are believed to have originated in microorganisms in the environment, and to have been transferred to other bacteria through mobile genetic elements. Among others, β-lactam antibiotics show clinical efficacy and low toxicity, and they are thus widely used as antimicrobials. Resistance to β-lactam antibiotics is conferred by β-lactamase genes and penicillin-binding proteins, which are chromosomal- or plasmid-encoded, although there is little information available on the contribution of other mobile genetic elements, such as phages. This study is focused on three genes that confer resistance to β-lactam antibiotics, namely two β-lactamase genes (blaTEM and blaCTX-M9) and one encoding a penicillin-binding protein (mecA) in bacteriophage DNA isolated from environmental water samples. The three genes were quantified in the DNA isolated from bacteriophages collected from 30 urban sewage and river water samples, using quantitative PCR amplification. All three genes were detected in the DNA of phages from all the samples tested, in some cases reaching 104 gene copies (GC) of blaTEM or 102 GC of blaCTX-M and mecA. These values are consistent with the amount of fecal pollution in the sample, except for mecA, which showed a higher number of copies in river water samples than in urban sewage. The bla genes from phage DNA were transferred by electroporation to sensitive host bacteria, which became resistant to ampicillin. blaTEM and blaCTX were detected in the DNA of the resistant clones after transfection. This study indicates that phages are reservoirs of resistance genes in the environment

    The Complete Genome Sequence of Escherichia coli EC958: A High Quality Reference Sequence for the Globally Disseminated Multidrug Resistant E. coli O25b:H4-ST131 Clone

    Get PDF
    Escherichia coli ST131 is now recognised as a leading contributor to urinary tract and bloodstream infections in both community and clinical settings. Here we present the complete, annotated genome of E. coli EC958, which was isolated from the urine of a patient presenting with a urinary tract infection in the Northwest region of England and represents the most well characterised ST131 strain. Sequencing was carried out using the Pacific Biosciences platform, which provided sufficient depth and read-length to produce a complete genome without the need for other technologies. The discovery of spurious contigs within the assembly that correspond to site-specific inversions in the tail fibre regions of prophages demonstrates the potential for this technology to reveal dynamic evolutionary mechanisms. E. coli EC958 belongs to the major subgroup of ST131 strains that produce the CTX-M-15 extended spectrum β-lactamase, are fluoroquinolone resistant and encode the fimH30 type 1 fimbrial adhesin. This subgroup includes the Indian strain NA114 and the North American strain JJ1886. A comparison of the genomes of EC958, JJ1886 and NA114 revealed that differences in the arrangement of genomic islands, prophages and other repetitive elements in the NA114 genome are not biologically relevant and are due to misassembly. The availability of a high quality uropathogenic E. coli ST131 genome provides a reference for understanding this multidrug resistant pathogen and will facilitate novel functional, comparative and clinical studies of the E. coli ST131 clonal lineage
    corecore