1,915 research outputs found

    Multivoxel Pattern Analysis Reveals Auditory Motion Information in MT+ of Both Congenitally Blind and Sighted Individuals

    Get PDF
    Cross-modal plasticity refers to the recruitment of cortical regions involved in the processing of one modality (e.g. vision) for processing other modalities (e.g. audition). The principles determining how and where cross-modal plasticity occurs remain poorly understood. Here, we investigate these principles by testing responses to auditory motion in visual motion area MT+ of congenitally blind and sighted individuals. Replicating previous reports, we find that MT+ as a whole shows a strong and selective responses to auditory motion in congenitally blind but not sighted individuals, suggesting that the emergence of this univariate response depends on experience. Importantly, however, multivoxel pattern analyses showed that MT+ contained information about different auditory motion conditions in both blind and sighted individuals. These results were specific to MT+ and not found in early visual cortex. Basic sensitivity to auditory motion in MT+ is thus experience-independent, which may be a basis for the region's strong cross-modal recruitment in congenital blindness

    PI3Kδ and PI3Kγ isoforms have distinct functions in regulating pro-tumoural signalling in the multiple myeloma microenvironment

    Get PDF
    Phosphoinositide-3-kinase and protein kinase B (PI3K-AKT) is upregulated in multiple myeloma (MM). Using a combination of short hairpin RNA (shRNA) lentivirus-mediated knockdown and pharmacologic isoform-specific inhibition we investigated the role of the PI3K p110γ (PI3Kγ) subunit in regulating MM proliferation and bone marrow microenvironment-induced MM interactions. We compared this with inhibition of the PI3K p110δ (PI3kδ) subunit and with combined PI3kδ/γ dual inhibition. We found that MM cell adhesion and migration were PI3Kγ-specific functions, with PI3kδ inhibition having no effect in MM adhesion or migration assays. At concentration of the dual PI3Kδ/γ inhibitor duvelisib, which can be achieved in vivo we saw a decrease in AKT phosphorylation at s473 after tumour activation by bone marrow stromal cells (BMSC) and interleukin-6. Moreover, after drug treatment of BMSC/tumour co-culture activation assays only dual PI3kδ/γ inhibition was able to induce MM apoptosis. shRNA lentiviral-mediated targeting of either PI3Kδ or PI3Kγ alone, or both in combination, increased survival of NSG mice xeno-transplanted with MM cells. Moreover, treatment with duvelisib reduced MM tumour burden in vivo. We report that PI3Kδ and PI3Kγ isoforms have distinct functions in MM and that combined PI3kδ/γ isoform inhibition has anti-MM activity. Here we provide a scientific rationale for trials of dual PI3kδ/γ inhibition in patients with MM

    The ESR1 (6q25) locus is associated with calcaneal ultrasound parameters and radial volumetric bone mineral density in European men

    Get PDF
    <p><b>Purpose:</b> Genome-wide association studies (GWAS) have identified 6q25, which incorporates the oestrogen receptor alpha gene (ESR1), as a quantitative trait locus for areal bone mineral density (BMD(a)) of the hip and lumbar spine. The aim of this study was to determine the influence of this locus on other bone health outcomes; calcaneal ultrasound (QUS) parameters, radial peripheral quantitative computed tomography (pQCT) parameters and markers of bone turnover in a population sample of European men.</p> <p><b>Methods:</b> Eight single nucleotide polymorphisms (SNP) in the 6q25 locus were genotyped in men aged 40-79 years from 7 European countries, participating in the European Male Ageing Study (EMAS). The associations between SNPs and measured bone parameters were tested under an additive genetic model adjusting for centre using linear regression.</p> <p><b>Results:</b> 2468 men, mean (SD) aged 59.9 (11.1) years had QUS measurements performed and bone turnover marker levels measured. A subset of 628 men had DXA and pQCT measurements. Multiple independent SNPs showed significant associations with BMD using all three measurement techniques. Most notably, rs1999805 was associated with a 0.10 SD (95%CI 0.05, 0.16; p = 0.0001) lower estimated BMD at the calcaneus, a 0.14 SD (95%CI 0.05, 0.24; p = 0.004) lower total hip BMD(a), a 0.12 SD (95%CI 0.02, 0.23; p = 0.026) lower lumbar spine BMD(a) and a 0.18 SD (95%CI 0.06, 0.29; p = 0.003) lower trabecular BMD at the distal radius for each copy of the minor allele. There was no association with serum levels of bone turnover markers and a single SNP which was associated with cortical density was also associated with cortical BMC and thickness.</p> <p><b>Conclusions:</b> Our data replicate previous associations found between SNPs in the 6q25 locus and BMD(a) at the hip and extend these data to include associations with calcaneal ultrasound parameters and radial volumetric BMD.</p&gt

    Blockade of insulin-like growth factors increases efficacy of paclitaxel in metastatic breast cancer.

    Get PDF
    Breast cancer remains the leading cause of cancer death in women owing to metastasis and the development of resistance to established therapies. Macrophages are the most abundant immune cells in the breast tumor microenvironment and can both inhibit and support cancer progression. Thus, gaining a better understanding of how macrophages support cancer could lead to the development of more effective therapies. In this study, we find that breast cancer-associated macrophages express high levels of insulin-like growth factors 1 and 2 (IGFs) and are the main source of IGFs within both primary and metastatic tumors. In total, 75% of breast cancer patients show activation of insulin/IGF-1 receptor signaling and this correlates with increased macrophage infiltration and advanced tumor stage. In patients with invasive breast cancer, activation of Insulin/IGF-1 receptors increased to 87%. Blocking IGF in combination with paclitaxel, a chemotherapeutic agent commonly used to treat breast cancer, showed a significant reduction in tumor cell proliferation and lung metastasis in pre-clinical breast cancer models compared to paclitaxel monotherapy. Our findings provide the rationale for further developing the combination of paclitaxel with IGF blockers for the treatment of invasive breast cancer, and Insulin/IGF1R activation and IGF+ stroma cells as potential biomarker candidates for further evaluation

    A Minimal Threshold of c-di-GMP Is Essential for Fruiting Body Formation and Sporulation in Myxococcus xanthus

    Get PDF
    Generally, the second messenger bis-(3’-5’)-cyclic dimeric GMP (c-di-GMP) regulates the switch between motile and sessile lifestyles in bacteria. Here, we show that c-di-GMP is an essential regulator of multicellular development in the social bacterium Myxococcus xanthus. In response to starvation, M. xanthus initiates a developmental program that culminates in formation of spore-filled fruiting bodies. We show that c-di-GMP accumulates at elevated levels during development and that this increase is essential for completion of development whereas excess c-di-GMP does not interfere with development. MXAN3735 (renamed DmxB) is identified as a diguanylate cyclase that only functions during development and is responsible for this increased c-di-GMP accumulation. DmxB synthesis is induced in response to starvation, thereby restricting DmxB activity to development. DmxB is essential for development and functions downstream of the Dif chemosensory system to stimulate exopolysaccharide accumulation by inducing transcription of a subset of the genes encoding proteins involved in exopolysaccharide synthesis. The developmental defects in the dmxB mutant are non-cell autonomous and rescued by co-development with a strain proficient in exopolysaccharide synthesis, suggesting reduced exopolysaccharide accumulation as the causative defect in this mutant. The NtrC-like transcriptional regulator EpsI/Nla24, which is required for exopolysaccharide accumulation, is identified as a c-diGMP receptor, and thus a putative target for DmxB generated c-di-GMP. Because DmxB can be—at least partially—functionally replaced by a heterologous diguanylate cyclase, these results altogether suggest a model in which a minimum threshold level of c-di-GMP is essential for the successful completion of multicellular development in M. xanthus

    G12/13 Signaling Pathways Substitute for Integrin αIIbβ3-Signaling for Thromboxane Generation in Platelets

    Get PDF
    We have previously shown that ADP-induced TXA(2) generation requires signaling from αIIbβ3 integrin in platelets. Here we observed that, unlike ADP, protease-activated receptor (PAR)-mediated TXA(2) generation occurs independently of αIIbβ3. PAR agonists, but not ADP, activate G(12/13) signaling pathways. Hence, we evaluated the role of these pathways in TXA(2) generation.Inhibition of ADP-induced thromboxane generation by fibrinogen receptor antagonist SC57101 was rescued by co-stimulation of G(12/13) pathways with YFLLRNP. This observation suggested an existence of a common signaling effector downstream of integrins and G(12/13) pathways. Hence, we evaluated role of three potential tyrosine kinases; c-Src, Syk and FAK (Focal Adhesion Kinase) that are known to be activated by integrins. c-Src and Syk kinase did not play a role in ADP-induced functional responses in platelets. Selective activation of G(12/13) pathways resulted in the activation of FAK, in the absence of integrin signaling. Interestingly, αIIbβ3-mediated FAK activation occurred in a Src family kinase (SFK)-independent manner whereas G(12/13) pathway caused FAK activation in a SFK and RhoA-dependent manner. A FAK selective inhibitor TAE-226, blocked TXA(2) generation. However, in comparison to WT mice, Pf4-Cre/Fak-Floxed mice did not show any difference in platelet TXA(2) generation.Therefore, we conclude that differential activation of FAK occurs downstream of Integrins and G(12/13) pathways. However, the common effector molecule, possibly a tyrosine kinase downstream of integrins and G(12/13) pathways contributing to TXA(2) generation in platelets remains elusive

    Systems Analysis Unfolds the Relationship between the Phosphoketolase Pathway and Growth in Aspergillus nidulans

    Get PDF
    Background: Aspergillus nidulans is an important model organism for studies on fundamental eukaryotic cell biology and on industrial processes due to its close relation to A. niger and A. oryzae. Here we identified the gene coding for a novel metabolic pathway in A. nidulans, namely the phosphoketolase pathway, and investigated the role of an increased phosphoketolase activity. Methodology/Principal Findings: Over-expression of the phosphoketolase gene (phk) improved the specific growth rate on xylose, glycerol and ethanol. Transcriptome analysis showed that a total of 1,222 genes were significantly affected by overexpression of the phk, while more than half of the affected genes were carbon source specific. During growth on glucose medium, the transcriptome analysis showed that the response to phk over-expression is targeted to neutralize the effect of the over-expression by regulating the acetate metabolism and initiate a growth dampening response. Conclusions/Significance: Metabolic flux analysis using 13C-labelled glucose, showed that over-expression of phosphoketolase added flexibility to the central metabolism. Our findings further suggests that A. nidulans is not optimized for growth on xylose, glycerol or ethanol as the sole carbon sources. © 2008 Panagiotou et al.published_or_final_versio

    Immunohistochemical analysis of changes in signaling pathway activation downstream of growth factor receptors in pancreatic duct cell carcinogenesis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The pathogenesis of pancreatic ductal adenocarcinoma (PDAC) involves multi-stage development of molecular aberrations affecting signaling pathways that regulate cancer growth and progression. This study was performed to gain a better understanding of the abnormal signaling that occurs in PDAC compared with normal duct epithelia.</p> <p>Methods</p> <p>We performed immunohistochemistry on a tissue microarray of 26 PDAC, 13 normal appearing adjacent pancreatic ductal epithelia, and 12 normal non-PDAC ducts. We compared the levels of 18 signaling proteins including growth factor receptors, tumor suppressors and 13 of their putative downstream phosphorylated (p-) signal transducers in PDAC to those in normal ductal epithelia.</p> <p>Results</p> <p>The overall profiles of signaling protein expression levels, activation states and sub-cellular distribution in PDAC cells were distinguishable from non-neoplastic ductal epithelia. The ERK pathway activation was correlated with high levels of <sup>S2448</sup>p-mTOR (100%, p = 0.05), <sup>T389</sup>p-S6K (100%, p = 0.02 and <sup>S235/236</sup>p-S6 (86%, p = 0.005). Additionally, <sup>T389</sup>p-S6K correlated with <sup>S727</sup>p-STAT3 (86%, p = 0.005). Advanced tumors with lymph node metastasis were characterized by high levels of <sup>S276</sup>p-NFκB (100%, p = 0.05) and <sup>S9</sup>p-GSK3β (100%, p = 0.05). High levels of PKBβ/AKT2, EGFR, as well as nuclear <sup>T202/Y204</sup>p-ERK and <sup>T180/Y182</sup>p-p38 were observed in normal ducts adjacent to PDAC compared with non-cancerous pancreas.</p> <p>Conclusion</p> <p>Multiple signaling proteins are activated in pancreatic duct cell carcinogenesis including those associated with the ERK, PKB/AKT, mTOR and STAT3 pathways. The ERK pathway activation appears also increased in duct epithelia adjacent to carcinoma, suggesting tumor micro-environmental effects.</p

    Morphology Analysis of Si Island Arrays on Si(001)

    Get PDF
    The formation of nanometer-scale islands is an important issue for bottom-up-based schemes in novel electronic, optoelectronic and magnetoelectronic devices technology. In this work, we present a detailed atomic force microscopy analysis of Si island arrays grown by molecular beam epitaxy. Recent reports have shown that self-assembled distributions of fourfold pyramid-like islands develop in 5-nm thick Si layers grown at substrate temperatures of 650 and 750°C on HF-prepared Si(001) substrates. Looking for wielding control and understanding the phenomena involved in this surface nanostructuring, we develop and apply a formalism that allows for processing large area AFM topographic images in a shot, obtaining surface orientation maps with specific information on facets population. The procedure reveals some noticeable features of these Si island arrays, e.g. a clear anisotropy of the in-plane local slope distributions. Total island volume analysis also indicates mass transport from the substrate surface to the 3D islands, a process presumably related to the presence of trenches around some of the pyramids. Results are discussed within the framework of similar island arrays in homoepitaxial and heteroepitaxial semiconductor systems

    Observation of CR Anisotropy with ARGO-YBJ

    Get PDF
    The measurement of the anisotropies of cosmic ray arrival direction provides important informations on the propagation mechanisms and on the identification of their sources. In this paper we report the observation of anisotropy regions at different angular scales. In particular, the observation of a possible anisotropy on scales between ∼\sim 10 ∘^{\circ} and ∼\sim 30 ∘^{\circ} suggests the presence of unknown features of the magnetic fields the charged cosmic rays propagate through, as well as potential contributions of nearby sources to the total flux of cosmic rays. Evidence of new weaker few-degree excesses throughout the sky region 195∘≤195^{\circ}\leq R.A. ≤315∘\leq 315^{\circ} is reported for the first time.Comment: Talk given at 12th TAUP Conference 2011, 5-9 September 2011, Munich, German
    • …
    corecore