1,597 research outputs found

    Accumulation horizons and period-adding in optically injected semiconductor lasers

    Get PDF
    We study the hierarchical structuring of islands of stable periodic oscillations inside chaotic regions in phase diagrams of single-mode semiconductor lasers with optical injection. Phase diagrams display remarkable {\it accumulation horizons}: boundaries formed by the accumulation of infinite cascades of self-similar islands of periodic solutions of ever-increasing period. Each cascade follows a specific period-adding route. The riddling of chaotic laser phases by such networks of periodic solutions may compromise applications operating with chaotic signals such as e.g. secure communications.Comment: 4 pages, 4 figures, laser phase diagrams, to appear in Phys. Rev. E, vol. 7

    Analysis of the temperature influence on Langmuir probe measurements on the basis of gyrofluid simulations

    Full text link
    The influence of the temperature and its fluctuations on the ion saturation current and the floating potential, which are typical quantities measured by Langmuir probes in the turbulent edge region of fusion plasmas, is analysed by global nonlinear gyrofluid simulations for two exemplary parameter regimes. The numerical simulation facilitates a direct access to densities, temperatures and the plasma potential at different radial positions around the separatrix. This allows a comparison between raw data and the calculated ion saturation current and floating potential within the simulation. Calculations of the fluctuation-induced radial particle flux and its statistical properties reveal significant differences to the actual values at all radial positions of the simulation domain, if the floating potential and the temperature averaged density inferred from the ion saturation current is used.Comment: Submitted to Plasma Physics and Controlled Fusio

    Death feigning as an adaptive anti‐predator behaviour: Further evidence for its evolution from artificial selection and natural populations

    Get PDF
    Death feigning is considered to be an adaptive antipredator behaviour. Previous studies on Tribolium castaneum have shown that prey which death feign have a fitness advantage over those that do not when using a jumping spider as the predator. Whether these effects are repeatable across species or whether they can be seen in nature is, however, unknown. Therefore, the present study involved two experiments: (a) divergent artificial selection for the duration of death feigning using a related species T. freemani as prey and a predatory bug as predator, demonstrating that previous results are repeatable across both prey and predator species, and (b) comparison of the death‐feigning duration of T. castaneum populations collected from field sites with and without predatory bugs. In the first experiment, T. freemani adults from established selection regimes with longer durations of death feigning had higher survival rates and longer latency to being preyed on when they were placed with predatory bugs than the adults from regimes selected for shorter durations of death feigning. As a result, the adaptive significance of death‐feigning behaviour was demonstrated in another prey–predator system. In the second experiment, wild T. castaneum beetles from populations with predators feigned death longer than wild beetles from predator‐free populations. Combining the results from these two experiments with those from previous studies provided strong evidence that predators drive the evolution of longer death feigning

    Arabidopsis ABCG14 is essential for the root-to-shoot translocation of cytokinin.

    Get PDF
    Cytokinins are phytohormones that induce cytokinesis and are essential for diverse developmental and physiological processes in plants. Cytokinins of the trans-zeatin type are mainly synthesized in root vasculature and transported to the shoot, where they regulate shoot growth. However, the mechanism of long-distance transport of cytokinin was hitherto unknown. Here, we report that the Arabidopsis ATP-binding cassette (ABC) transporter subfamily G14 (AtABCG14) is mainly expressed in roots and plays a major role in delivering cytokinins to the shoot. Loss of AtABCG14 expression resulted in severe shoot growth retardation, which was rescued by exogenous trans-zeatin application. Cytokinin content was decreased in the shoots of atabcg14 plants and increased in the roots, with consistent changes in the expression of cytokinin-responsive genes. Grafting of atabcg14 scions onto wild-type rootstocks restored shoot growth, whereas wild-type scions grafted onto atabcg14 rootstocks exhibited shoot growth retardation similar to that of atabcg14. Cytokinin concentrations in the xylem are reduced by similar to 90% in the atabcg14 mutant. These results indicate that AtABCG14 is crucial for the translocation of cytokinin to the shoot. Our results provide molecular evidence for the long-distance transport of cytokinin and show that this transport is necessary for normal shoot development.open118380Ysciescopu

    Synthesis of niobium-alumina composite aggregates and their application in coarse-grained refractory ceramic-metal castables

    Get PDF
    Niobium-alumina aggregate fractions with particle sizes up to 3150 ”m were produced by crushing pre-synthesised fine-grained composites. Phase separation with niobium enrichment in the aggregate class 45–500 ”m was revealed by XRD/Rietveld analysis. To reduce the amount of carbon-based impurities, no organic additives were used for the castable mixtures, which resulted in water demands of approximately 27 vol.% for the fine- and coarse-grained castables. As a consequence, open porosities of 18% and 30% were determined for the fine- and coarse-grained composites, respectively. Due to increased porosity, the modulus of rupture at room temperature decreased from 52 MPa for the fine-grained composite to 11 MPa for the coarse-grained one. However, even the compressive yield strength decreased from 49 MPa to 18 MPa at 1300 °C for the fine-grained to the coarse-grained composite, the latter showed still plasticity with a strain up to 5%. The electrical conductivity of fine-grained composite samples was in the range between 40 and 60 S/cm, which is fifteen magnitudes above the values of pure corundum

    Effects of precompetition state anxiety interventions on performance time and accuracy among amateur soccer players: Revisiting the matching hypothesis

    Get PDF
    In this study, we tested the matching ypothesis, which contends that administration of a cognitive or somatic anxiety intervention should be matched to a participant's dominant anxiety response. Sixty-one male soccer players (mean age 31.6 years, s=6.3) were assigned to one of four groups based on their responses to the Competitive State Anxiety Inventory-2, which was modified to include a directional scale. Interventions were randomly administered in a counterbalanced order 10 min before each performance trial on a soccer skill test. The dominantly cognitive anxious group (n=17), the dominantly somatic anxious group (n=17), and the non-anxious control intervention group (n=14) completed a baseline performance trial. The second and third trials were completed with random administration of brief cognitive and somatic interventions. The non-anxious control group (n=13) completed three trials with no intervention. A mixed-model, GroupTreatment multivariate analysis of variance indicated significant (P0.05), or performance time or accuracy (P>0.05). The present findings do not provide support for the matching hypothesis for state anxiety intensity and direction, or for performance

    Anthropogenic ecosystem fragmentation drives shared and unique patterns of sexual signal divergence among three species of Bahamian mosquitofish

    Get PDF
    When confronted with similar environmental challenges, different organisms can exhibit dissimilar phenotypic responses. Therefore, understanding patterns of phenotypic divergence for closely related species requires considering distinct evolutionary histories. Here, we investigated how a common form of human-induced environmental alteration, habitat fragmentation, may drive phenotypic divergence among three closely related species of Bahamian mosquitofish (Gambusia spp.). Focusing on one phenotypic trait (male coloration), having a priori predictions of divergence, we tested whether populations persisting in fragmented habitats differed from those inhabiting unfragmented habitats and examined the consistency of the pattern across species. Species exhibited both shared and unique patterns of phenotypic divergence between the two types of habitats, with shared patterns representing the stronger effect. For all species, populations in fragmented habitats had fewer dorsal-fin spots. In contrast, the magnitude and trajectory of divergence in dorsal-fin color, a sexually selected trait, differed among species. We identified fragmentation-mediated increased turbidity as a possible driver of these trait shifts. These results suggest that even closely related species can exhibit diverse phenotypic responses when encountering similar human-mediated selection regimes. This element of unpredictability complicates forecasting the phenotypic responses of wild organisms faced with anthropogenic change - an important component of biological conservation and ecosystem management

    RT-qPCR reveals opsin gene upregulation associated with age and sex in guppies (Poecilia reticulata) - a species with color-based sexual selection and 11 visual-opsin genes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>PCR-based surveys have shown that guppies (<it>Poecilia reticulata</it>) have an unusually large visual-opsin gene repertoire. This has led to speculation that opsin duplication and divergence has enhanced the evolution of elaborate male coloration because it improves spectral sensitivity and/or discrimination in females. However, this conjecture on evolutionary connections between opsin repertoire, vision, mate choice, and male coloration was generated with little data on gene expression. Here, we used RT-qPCR to survey visual-opsin gene expression in the eyes of males, females, and juveniles in order to further understand color-based sexual selection from the perspective of the visual system.</p> <p>Results</p> <p>Juvenile and adult (male and female) guppies express 10 visual opsins at varying levels in the eye. Two opsin genes in juveniles, <it>SWS2B </it>and <it>RH2-2</it>, accounted for >85% of all visual-opsin transcripts in the eye, excluding <it>RH1</it>. This relative abundance (RA) value dropped to about 65% in adults, as <it>LWS-A180 </it>expression increased from approximately 3% to 20% RA. The juvenile-to-female transition also showed <it>LWS-S180 </it>upregulation from about 1.5% to 7% RA. Finally, we found that expression in guppies' <it>SWS2-LWS </it>gene cluster is negatively correlated with distance from a candidate locus control region (LCR).</p> <p>Conclusions</p> <p>Selective pressures influencing visual-opsin gene expression appear to differ among age and sex. <it>LWS </it>upregulation in females is implicated in augmenting spectral discrimination of male coloration and courtship displays. In males, enhanced discrimination of carotenoid-rich food and possibly rival males are strong candidate selective pressures driving <it>LWS </it>upregulation. These developmental changes in expression suggest that adults possess better wavelength discrimination than juveniles. Opsin expression within the <it>SWS2-LWS </it>gene cluster appears to be regulated, in part, by a common LCR. Finally, by comparing our RT-qPCR data to MSP data, we were able to propose the first opsin-to-λ<sub>max </sub>assignments for all photoreceptor types in the cone mosaic.</p
    • 

    corecore