128 research outputs found

    Age-Related Attenuation of Dominant Hand Superiority

    Get PDF
    The decline of motor performance of the human hand-arm system with age is well-documented. While dominant hand performance is superior to that of the non-dominant hand in young individuals, little is known of possible age-related changes in hand dominance. We investigated age-related alterations of hand dominance in 20 to 90 year old subjects. All subjects were unambiguously right-handed according to the Edinburgh Handedness Inventory. In Experiment 1, motor performance for aiming, postural tremor, precision of arm-hand movement, speed of arm-hand movement, and wrist-finger speed tasks were tested. In Experiment 2, accelerometer-sensors were used to obtain objective records of hand use in everyday activities

    Immunodominant T Cell Determinants of Aquaporin-4, the Autoantigen Associated with Neuromyelitis Optica

    Get PDF
    Autoantibodies that target the water channel aquaporin-4 (AQP4) in neuromyelitis optica (NMO) are IgG1, a T cell-dependent Ig subclass. However, a role for AQP4-specific T cells in this CNS inflammatory disease is not known. To evaluate their potential role in CNS autoimmunity, we have identified and characterized T cells that respond to AQP4 in C57BL/6 and SJL/J mice, two strains that are commonly studied in models of CNS inflammatory diseases. Mice were immunized with either overlapping peptides or intact hAQP4 protein encompassing the entire 323 amino acid sequence. T cell determinants identified from examination of the AQP4 peptide (p) library were located within AQP4 p21-40, p91-110, p101-120, p166-180, p231-250 and p261-280 in C57BL/6 mice, and within p11-30, p21-40, p101-120, p126-140 and p261-280 in SJL/J mice. AQP4-specific T cells were CD4+ and MHC II-restricted. In recall responses to immunization with intact AQP4, T cells responded primarily to p21-40, indicating this region contains the immunodominant T cell epitope(s) for both strains. AQP4 p21-40-primed T cells secreted both IFN-γ and IL-17. The core immunodominant AQP4 21-40 T cell determinant was mapped to residues 24-35 in C57BL/6 mice and 23-35 in SJL/J mice. Our identification of the AQP4 T cell determinants and characterization of its immunodominant determinant should permit investigators to evaluate the role of AQP4-specific T cells in vivo and to develop AQP4-targeted murine NMO models

    Pathogenic T cell responses against aquaporin 4

    Get PDF
    Inflammatory lesions in the central nervous system of patients with neuromyelitis optica are characterized by infiltration of T cells and deposition of aquaporin-4-specific antibodies and complement on astrocytes at the glia limitans. Although the contribution of aquaporin-4-specific autoantibodies to the disease process has been recently elucidated, a potential role of aquaporin-4-specific T cells in lesion formation is unresolved. To address this issue, we raised aquaporin-4-specific T cell lines in Lewis rats and characterized their pathogenic potential in the presence and absence of aquaporin-4-specific autoantibodies of neuromyelitis optica patients. We show that aquaporin-4-specific T cells induce brain inflammation with particular targeting of the astrocytic glia limitans and permit the entry of pathogenic anti-aquaporin-4-specific antibodies to induce NMO-like lesions in spinal cord and brain. In addition, transfer of aquaporin-4-specific T cells provoked mild (subclinical) myositis and interstitial nephritis. We further show that the expression of the conformational epitope, recognized by NMO patient-derived aquaporin-4-specific antibodies is induced in kidney cells by the pro-inflammatory cytokine gamma-interferon. Our data provide further support for the view that NMO lesions may be induced by a complex interplay of T cell mediated and humoral immune responses against aquaporin-4

    Differential diagnosis of suspected multiple sclerosis: a consensus approach

    Get PDF
    BACKGROUND AND OBJECTIVES: Diagnosis of multiple sclerosis (MS) requires exclusion of diseases that could better explain the clinical and paraclinical findings. A systematic process for exclusion of alternative diagnoses has not been defined. An International Panel of MS experts developed consensus perspectives on MS differential diagnosis. METHODS: Using available literature and consensus, we developed guidelines for MS differential diagnosis, focusing on exclusion of potential MS mimics, diagnosis of common initial isolated clinical syndromes, and differentiating between MS and non-MS idiopathic inflammatory demyelinating diseases. RESULTS: We present recommendations for 1) clinical and paraclinical red flags suggesting alternative diagnoses to MS; 2) more precise definition of "clinically isolated syndromes" (CIS), often the first presentations of MS or its alternatives; 3) algorithms for diagnosis of three common CISs related to MS in the optic nerves, brainstem, and spinal cord; and 4) a classification scheme and diagnosis criteria for idiopathic inflammatory demyelinating disorders of the central nervous system. CONCLUSIONS: Differential diagnosis leading to MS or alternatives is complex and a strong evidence base is lacking. Consensus-determined guidelines provide a practical path for diagnosis and will be useful for the non-MS specialist neurologist. Recommendations are made for future research to validate and support these guidelines. Guidance on the differential diagnosis process when MS is under consideration will enhance diagnostic accuracy and precision

    Dysregulated Recruitment of the Histone Methyltransferase EZH2 to the Class II Transactivator (CIITA) Promoter IV in Breast Cancer Cells

    Get PDF
    One mechanism frequently utilized by tumor cells to escape immune system recognition and elimination is suppression of cell surface expression of Major Histocompatibility Class II (MHC II) molecules. Expression of MHC II is regulated primarily at the level of transcription by the Class II Transactivator, CIITA, and decreased CIITA expression is observed in multiple tumor types. We investigate here contributions of epigenetic modifications to transcriptional silencing of CIITA in variants of the human breast cancer cell line MDA MB 435. Significant increases in histone H3 lysine 27 trimethylation upon IFN-γ stimulation correlate with reductions in transcription factor recruitment to the interferon-γ inducible CIITA promoter, CIITApIV, and with significantly increased CIITApIV occupancy by the histone methyltransferase enhancer of zeste homolog 2 (EZH2). Most compelling is evidence that decreased expression of EZH2 in MDA MB 435 variants results in significant increases in CIITA and HLA-DRA mRNA expression, even in the absence of interferon-γ stimulation, as well as increased cell surface expression of MHC II. Together, these data add mechanistic insight to prior observations of increased EZH2 expression and decreased CIITA expression in multiple tumor types

    NRF2 Activation Restores Disease Related Metabolic Deficiencies in Olfactory Neurosphere-Derived Cells from Patients with Sporadic Parkinson's Disease

    Get PDF
    Extent: 14p.Background: Without appropriate cellular models the etiology of idiopathic Parkinson’s disease remains unknown. We recently reported a novel patient-derived cellular model generated from biopsies of the olfactory mucosa (termed olfactory neurosphere-derived (hONS) cells) which express functional and genetic differences in a disease-specific manner. Transcriptomic analysis of Patient and Control hONS cells identified the NRF2 transcription factor signalling pathway as the most differentially expressed in Parkinson’s disease. Results: We tested the robustness of our initial findings by including additional cell lines and confirmed that hONS cells from Patients had 20% reductions in reduced glutathione levels and MTS [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)- 2-(4-sulfophenyl)-2H-tetrazolium, inner salt] metabolism compared to cultures from healthy Control donors. We also confirmed that Patient hONS cells are in a state of oxidative stress due to higher production of H2O2 than Control cultures. siRNA-mediated ablation of NRF2 in Control donor cells decreased both total glutathione content and MTS metabolism to levels detected in cells from Parkinson’s Disease patients. Conversely, and more importantly, we showed that activation of the NRF2 pathway in Parkinson’s disease hONS cultures restored glutathione levels and MTS metabolism to Control levels. Paradoxically, transcriptomic analysis after NRF2 pathway activation revealed an increased number of differentially expressed mRNAs within the NRF2 pathway in L-SUL treated Patient-derived hONS cells compared to L-SUL treated Controls, even though their metabolism was restored to normal. We also identified differential expression of the PI3K/AKT signalling pathway, but only post-treatment. Conclusions: Our results confirmed NRF2 as a potential therapeutic target for Parkinson’s disease and provided the first demonstration that NRF2 function was inducible in Patient-derived cells from donors with uniquely varied genetic backgrounds. However, our results also demonstrated that the response of PD patient-derived cells was not co-ordinated in the same way as in Control cells. This may be an important factor when developing new therapeutics.Anthony L. Cook, Alejandra M. Vitale, Sugandha Ravishankar, Nicholas Matigian, Greg T. Sutherland, Jiangou Shan, Ratneswary Sutharsan, Chris Perry, Peter A. Silburn, George D. Mellick, Murray L. Whitelaw, Christine A. Wells, Alan Mackay-Sim and Stephen A. Woo

    Contrasting disease patterns in seropositive and seronegative neuromyelitis optica: A multicentre study of 175 patients

    Get PDF
    BACKGROUND: The diagnostic and pathophysiological relevance of antibodies to aquaporin-4 (AQP4-Ab) in patients with neuromyelitis optica spectrum disorders (NMOSD) has been intensively studied. However, little is known so far about the clinical impact of AQP4-Ab seropositivity. OBJECTIVE: To analyse systematically the clinical and paraclinical features associated with NMO spectrum disorders in Caucasians in a stratified fashion according to the patients' AQP4-Ab serostatus. METHODS: Retrospective study of 175 Caucasian patients (AQP4-Ab positive in 78.3%). RESULTS: Seropositive patients were found to be predominantly female (p 1 myelitis attacks in the first year were identified as possible predictors of a worse outcome. CONCLUSION: This study provides an overview of the clinical and paraclinical features of NMOSD in Caucasians and demonstrates a number of distinct disease characteristics in seropositive and seronegative patients

    Treatment of neuromyelitis optica: state-of-the-art and emerging therapies.

    Get PDF
    Neuromyelitis optica (NMO) is an autoimmune disease of the CNS that is characterized by inflammatory demyelinating lesions in the spinal cord and optic nerve, potentially leading to paralysis and blindness. NMO can usually be distinguished from multiple sclerosis (MS) on the basis of seropositivity for IgG antibodies against the astrocytic water channel aquaporin-4 (AQP4). Differentiation from MS is crucial, because some MS treatments can exacerbate NMO. NMO pathogenesis involves AQP4-IgG antibody binding to astrocytic AQP4, which causes complement-dependent cytotoxicity and secondary inflammation with granulocyte and macrophage infiltration, blood-brain barrier disruption and oligodendrocyte injury. Current NMO treatments include general immunosuppressive agents, B-cell depletion, and plasma exchange. Therapeutic strategies targeting complement proteins, the IL-6 receptor, neutrophils, eosinophils and CD19--all initially developed for other indications--are under clinical evaluation for repurposing for NMO. Therapies in the preclinical phase include AQP4-blocking antibodies and AQP4-IgG enzymatic inactivation. Additional, albeit currently theoretical, treatment options include reduction of AQP4 expression, disruption of AQP4 orthogonal arrays, enhancement of complement inhibitor expression, restoration of the blood-brain barrier, and induction of immune tolerance. Despite the many therapeutic options in NMO, no controlled clinical trials in patients with this condition have been conducted to date

    The Role of bZIP Transcription Factors in Green Plant Evolution: Adaptive Features Emerging from Four Founder Genes

    Get PDF
    BACKGROUND: Transcription factors of the basic leucine zipper (bZIP) family control important processes in all eukaryotes. In plants, bZIPs are regulators of many central developmental and physiological processes including photomorphogenesis, leaf and seed formation, energy homeostasis, and abiotic and biotic stress responses. Here we performed a comprehensive phylogenetic analysis of bZIP genes from algae, mosses, ferns, gymnosperms and angiosperms. METHODOLOGY/PRINCIPAL FINDINGS: We identified 13 groups of bZIP homologues in angiosperms, three more than known before, that represent 34 Possible Groups of Orthologues (PoGOs). The 34 PoGOs may correspond to the complete set of ancestral angiosperm bZIP genes that participated in the diversification of flowering plants. Homologous genes dedicated to seed-related processes and ABA-mediated stress responses originated in the common ancestor of seed plants, and three groups of homologues emerged in the angiosperm lineage, of which one group plays a role in optimizing the use of energy. CONCLUSIONS/SIGNIFICANCE: Our data suggest that the ancestor of green plants possessed four bZIP genes functionally involved in oxidative stress and unfolded protein responses that are bZIP-mediated processes in all eukaryotes, but also in light-dependent regulations. The four founder genes amplified and diverged significantly, generating traits that benefited the colonization of new environments
    corecore