88 research outputs found
Granulomatous enteritis in rainbow trout (Oncorhynchus mykiss) associated with soya bean meal regardless of water dissolved oxygen level
This study investigated morphological changes associated with soya bean meal-induced enteritis (SBMIE) in distal intestine (DI) of rainbow trout (Oncorhynchus mykiss) fed a soya bean meal (SBM)-based diet and exposed to normoxia or hypoxia created by optimal and low water flow rates, respectively. A 28-day adaption period was followed by a 42-day challenge period where 600 fish were subjected to dietary challenge and/or hypoxia. Twelve tanks each containing 50 juvenile trout were assigned randomly in triplicate to each treatment. Histopathological and immunohistochemical evaluation revealed pathological features that have not previously been described in association with SBMIE. Vacuolar degeneration of epithelial cells mainly at the base of mucosal folds, epithelial cysts, epithelial dysplasia, necrosis, shedding of necrotic cells, and granulomatous inflammation including infiltration of enlarged, sometimes finely vacuolated or “foamy” macrophages, multinucleated giant cells and increased proliferation of fibroblasts were observed. Acid-fast bacteria were not detected in enlarged macrophages; however, these cells contained AB-PAS- and sometimes cytokeratin-positive material, which was interpreted to be of epithelial/goblet cell origin. Hypoxia did not affect the morphological changes in DI. These results suggest that SBM was associated with a granulomatous form of enteritis in DI of rainbow trout regardless of water oxygen level
Physical activity and clustered cardiovascular disease risk factors in young children: a cross-sectional study (the IDEFICS study)
<p>Background
The relevance of physical activity (PA) for combating cardiovascular disease (CVD) risk in children has been highlighted, but to date there has been no large-scale study analyzing that association in children aged ≤9 years of age. This study sought to evaluate the associations between objectively-measured PA and clustered CVD risk factors in a large sample of European children, and to provide evidence for gender-specific recommendations of PA.</p>
<p>Methods
Cross-sectional data from a longitudinal study in 16,224 children aged 2 to 9 were collected. Of these, 3,120 (1,016 between 2 to 6 years, 2,104 between 6 to 9 years) had sufficient data for inclusion in the current analyses. Two different age-specific and gender-specific clustered CVD risk scores associated with PA were determined. First, a CVD risk factor (CRF) continuous score was computed using the following variables: systolic blood pressure (SBP), total triglycerides (TG), total cholesterol (TC)/high-density lipoprotein cholesterol (HDL-c) ratio, homeostasis model assessment of insulin resistance (HOMA-IR), and sum of two skinfolds (score CRFs). Secondly, another CVD risk score was obtained for older children containing the score CRFs + the cardiorespiratory fitness variable (termed score CRFs + fit). Data used in the current analysis were derived from the IDEFICS (‘Identification and prevention of Dietary- and lifestyle-induced health EFfects In Children and infantS’) study.</p>
<p>Results
In boys <6 years, the odds ratios (OR) for CVD risk were elevated in the least active quintile of PA (OR: 2.58) compared with the most active quintile as well as the second quintile for vigorous PA (OR: 2.91). Compared with the most active quintile, older children in the first, second and third quintiles had OR for CVD risk score CRFs + fit ranging from OR 2.69 to 5.40 in boys, and from OR 2.85 to 7.05 in girls.</p>
<p>Conclusions
PA is important to protect against clustering of CVD risk factors in young children, being more consistent in those older than 6 years. Healthcare professionals should recommend around 60 and 85 min/day of moderate-to-vigorous PA, including 20 min/day of vigorous PA.</p>
Challenges in QCD matter physics - The Compressed Baryonic Matter experiment at FAIR
Substantial experimental and theoretical efforts worldwide are devoted to
explore the phase diagram of strongly interacting matter. At LHC and top RHIC
energies, QCD matter is studied at very high temperatures and nearly vanishing
net-baryon densities. There is evidence that a Quark-Gluon-Plasma (QGP) was
created at experiments at RHIC and LHC. The transition from the QGP back to the
hadron gas is found to be a smooth cross over. For larger net-baryon densities
and lower temperatures, it is expected that the QCD phase diagram exhibits a
rich structure, such as a first-order phase transition between hadronic and
partonic matter which terminates in a critical point, or exotic phases like
quarkyonic matter. The discovery of these landmarks would be a breakthrough in
our understanding of the strong interaction and is therefore in the focus of
various high-energy heavy-ion research programs. The Compressed Baryonic Matter
(CBM) experiment at FAIR will play a unique role in the exploration of the QCD
phase diagram in the region of high net-baryon densities, because it is
designed to run at unprecedented interaction rates. High-rate operation is the
key prerequisite for high-precision measurements of multi-differential
observables and of rare diagnostic probes which are sensitive to the dense
phase of the nuclear fireball. The goal of the CBM experiment at SIS100
(sqrt(s_NN) = 2.7 - 4.9 GeV) is to discover fundamental properties of QCD
matter: the phase structure at large baryon-chemical potentials (mu_B > 500
MeV), effects of chiral symmetry, and the equation-of-state at high density as
it is expected to occur in the core of neutron stars. In this article, we
review the motivation for and the physics programme of CBM, including
activities before the start of data taking in 2022, in the context of the
worldwide efforts to explore high-density QCD matter.Comment: 15 pages, 11 figures. Published in European Physical Journal
Antidepressants during and after Menopausal Transition: A Systematic Review and Meta-Analysis
To assess the therapeutic benefits of antidepressants in depressive women during and after menopausal transition, PubMed, Cochrane Library, EMBASE and Science Direct were systematically searched from inception to February 1, 2020 for randomized controlled trials examining antidepressants compared to placebo. Primary outcome was change in depressive symptom severity, while secondary outcomes were rates of response/remission rates and dropout/discontinuation due to adverse events. Seven trials involving 1,676 participants (mean age = 52.6 years) showed significant improvement in depressive symptoms (k = 7, Hedges’ g = 0.44, 95% confidence interval (CI) = 0.32 to 0.57, p < 0.001) relative to that in controls. Furthermore, response (k = 3, odds ratio (OR) = 2.53, 95% CI = 1.24 to 5.15, p = 0.01) and remission (k = 3, OR = 1.84, 95% CI = 1.32 to 2.57, p < 0.001) rates were significantly higher in antidepressant-treated groups compared to those with controls. Although dropout rates did not differ between antidepressant and control groups (k = 6, OR = 0.93, 95% CI = 0.70 to 1.26, p = 0.68), the rate of discontinuation due to adverse events was significantly higher in antidepressant-treated groups (k = 6, OR = 0.55, 95% CI = 0.35 to 0.86, p = 0.01). Subgroup analysis indicated that antidepressants were also efficacious for depressive symptoms in those without diagnosis of MDD. The results demonstrated that antidepressants were efficacious for women with depressive syndromes during and after menopausal transition but associated with a higher risk of discontinuation due to adverse events
Engineered Single-Domain Antibodies with High Protease Resistance and Thermal Stability
The extreme pH and protease-rich environment of the upper gastrointestinal tract is a major obstacle facing orally-administered protein therapeutics, including antibodies. Through protein engineering, several Clostridium difficile toxin A-specific heavy chain antibody variable domains (VHHs) were expressed with an additional disulfide bond by introducing Ala/Gly54Cys and Ile78Cys mutations. Mutant antibodies were compared to their wild-type counterparts with respect to expression yield, non-aggregation status, affinity for toxin A, circular dichroism (CD) structural signatures, thermal stability, protease resistance, and toxin A-neutralizing capacity. The mutant VHHs were found to be well expressed, although with lower yields compared to wild-type counterparts, were non-aggregating monomers, retained low nM affinity for toxin A, albeit the majority showed somewhat reduced affinity compared to wild-type counterparts, and were capable of in vitro toxin A neutralization in cell-based assays. Far-UV and near-UV CD spectroscopy consistently showed shifts in peak intensity and selective peak minima for wild-type and mutant VHH pairs; however, the overall CD profile remained very similar. A significant increase in the thermal unfolding midpoint temperature was observed for all mutants at both neutral and acidic pH. Digestion of the VHHs with the major gastrointestinal proteases, at biologically relevant concentrations, revealed a significant increase in pepsin resistance for all mutants and an increase in chymotrypsin resistance for the majority of mutants. Mutant VHH trypsin resistance was similar to that of wild-type VHHs, although the trypsin resistance of one VHH mutant was significantly reduced. Therefore, the introduction of a second disulfide bond in the hydrophobic core not only increases VHH thermal stability at neutral pH, as previously shown, but also represents a generic strategy to increase VHH stability at low pH and impart protease resistance, with only minor perturbations in target binding affinities. These are all desirable characteristics for the design of protein-based oral therapeutics
What scans we will read: imaging instrumentation trends in clinical oncology
Oncological diseases account for a significant portion of the burden on public healthcare systems with associated
costs driven primarily by complex and long-lasting therapies. Through the visualization of patient-specific
morphology and functional-molecular pathways, cancerous tissue can be detected and characterized non-
invasively, so as to provide referring oncologists with essential information to support therapy management
decisions. Following the onset of stand-alone anatomical and functional imaging, we witness a push towards
integrating molecular image information through various methods, including anato-metabolic imaging (e.g., PET/
CT), advanced MRI, optical or ultrasound imaging.
This perspective paper highlights a number of key technological and methodological advances in imaging
instrumentation related to anatomical, functional, molecular medicine and hybrid imaging, that is understood as
the hardware-based combination of complementary anatomical and molecular imaging. These include novel
detector technologies for ionizing radiation used in CT and nuclear medicine imaging, and novel system
developments in MRI and optical as well as opto-acoustic imaging. We will also highlight new data processing
methods for improved non-invasive tissue characterization. Following a general introduction to the role of imaging
in oncology patient management we introduce imaging methods with well-defined clinical applications and
potential for clinical translation. For each modality, we report first on the status quo and point to perceived
technological and methodological advances in a subsequent status go section. Considering the breadth and
dynamics of these developments, this perspective ends with a critical reflection on where the authors, with the
majority of them being imaging experts with a background in physics and engineering, believe imaging methods
will be in a few years from now.
Overall, methodological and technological medical imaging advances are geared towards increased image contrast,
the derivation of reproducible quantitative parameters, an increase in volume sensitivity and a reduction in overall
examination time. To ensure full translation to the clinic, this progress in technologies and instrumentation is
complemented by progress in relevant acquisition and image-processing protocols and improved data analysis. To
this end, we should accept diagnostic images as “data”, and – through the wider adoption of advanced analysis,
including machine learning approaches and a “big data” concept – move to the next stage of non-invasive tumor
phenotyping. The scans we will be reading in 10 years from now will likely be composed of highly diverse multi-
dimensional data from multiple sources, which mandate the use of advanced and interactive visualization and
analysis platforms powered by Artificial Intelligence (AI) for real-time data handling by cross-specialty clinical experts
with a domain knowledge that will need to go beyond that of plain imaging
Properties, production, and applications of camelid single-domain antibody fragments
Camelids produce functional antibodies devoid of light chains of which the single N-terminal domain is fully capable of antigen binding. These single-domain antibody fragments (VHHs or Nanobodies®) have several advantages for biotechnological applications. They are well expressed in microorganisms and have a high stability and solubility. Furthermore, they are well suited for construction of larger molecules and selection systems such as phage, yeast, or ribosome display. This minireview offers an overview of (1) their properties as compared to conventional antibodies, (2) their production in microorganisms, with a focus on yeasts, and (3) their therapeutic applications
Effects of Enalapril on growth Performance, Ascites Mortality, Antioxidant Status and Blood Parameters in Broiler Chickens under Cold-Induced Ascites
Six hundred 1-d-old male broilers (Ross 308) were assigned to four experimental groups; each was composed of 5 floor pen replications of 30 birds including control (no enalapril), 15, 30 and 60 ppm enalapril in the drinking water. From d 21 to 49, all the chicks were exposed to low ambient temperature to induce ascites. Mortalities were inspected to determine the cause of death and diagnose of ascites. At the end of the experiment (wk 7), 2 chickens from each replicate were randomly selected and slaughtered. Body weight gain, feed intake and feed conversion ratio were calculated. Plasma protein, glucose, red blood cell, white blood cell, triglyceride, high-density lipoprotein, malondialdehyde, the activity of alkaline phosphatase, aspartate aminotransferase, alanine aminotransferase, creatine kinase, total antioxidant capacity, superoxide dismutase, and glutathione peroxidase were also determined. Results showed that enalapril for 30 and 60 ppm, significantly improved feed conversion ratio and enhanced body weight gain when measured at day 49. These levels of enalapril compared to the other groups, significantly reduced malondialdehyde level and glutathione peroxidase activity, but increased total antioxidant capacity and superoxide dismutase activity in plasma. Moreover, enalapril at levels of 30 and 60 ppm, significantly reduced aspartate aminotransferase, alkaline phosphatase and creatine kinase activities in plasma. Mortality due to ascites and right to total ventricular weight ratio were significantly low in groups received enalapril at greater levels (≥30 ppm). Compared to the control, enalapril increased high-density lipoprotein. In conclusion, enalapril could improve growth performance and reduced mortality in broilers
- …