892 research outputs found
Second-order electronic correlation effects in a one-dimensional metal
The Pariser-Parr-Pople (PPP) model of a single-band one-dimensional (1D)
metal is studied at the Hartree-Fock level, and by using the second-order
perturbation theory of the electronic correlation. The PPP model provides an
extension of the Hubbard model by properly accounting for the long-range
character of the electron-electron repulsion. Both finite and infinite version
of the 1D-metal model are considered within the PPP and Hubbard approximations.
Calculated are the second-order electronic-correlation corrections to the total
energy, and to the electronic-energy bands. Our results for the PPP model of 1D
metal show qualitative similarity to the coupled-cluster results for the 3D
electron-gas model. The picture of the 1D-metal model that emerges from the
present study provides a support for the hypothesis that the normal metallic
state of the 1D metal is different from the ground state.Comment: 21 pages, 16 figures; v2: small correction in title, added 3
references, extended and reformulated a few paragraphs (detailed information
at the end of .tex file); added color to figure
Cherenkov Telescope Array Data Management
Very High Energy gamma-ray astronomy with the Cherenkov Telescope Array (CTA)
is evolving towards the model of a public observatory. Handling, processing and
archiving the large amount of data generated by the CTA instruments and
delivering scientific products are some of the challenges in designing the CTA
Data Management. The participation of scientists from within CTA Consortium and
from the greater worldwide scientific community necessitates a sophisticated
scientific analysis system capable of providing unified and efficient user
access to data, software and computing resources. Data Management is designed
to respond to three main issues: (i) the treatment and flow of data from remote
telescopes; (ii) "big-data" archiving and processing; (iii) and open data
access. In this communication the overall technical design of the CTA Data
Management, current major developments and prototypes are presented.Comment: 8 pages, 2 figures, In Proceedings of the 34th International Cosmic
Ray Conference (ICRC2015), The Hague, The Netherlands. All CTA contributions
at arXiv:1508.0589
Search for muon-neutrino emission from GeV and TeV gamma-ray flaring blazars using five years of data of the ANTARES telescope
The ANTARES telescope is well-suited for detecting astrophysical transient
neutrino sources as it can observe a full hemisphere of the sky at all times
with a high duty cycle. The background due to atmospheric particles can be
drastically reduced, and the point-source sensitivity improved, by selecting a
narrow time window around possible neutrino production periods. Blazars, being
radio-loud active galactic nuclei with their jets pointing almost directly
towards the observer, are particularly attractive potential neutrino point
sources, since they are among the most likely sources of the very high-energy
cosmic rays. Neutrinos and gamma rays may be produced in hadronic interactions
with the surrounding medium. Moreover, blazars generally show high time
variability in their light curves at different wavelengths and on various time
scales. This paper presents a time-dependent analysis applied to a selection of
flaring gamma-ray blazars observed by the FERMI/LAT experiment and by TeV
Cherenkov telescopes using five years of ANTARES data taken from 2008 to 2012.
The results are compatible with fluctuations of the background. Upper limits on
the neutrino fluence have been produced and compared to the measured gamma-ray
spectral energy distribution.Comment: 27 pages, 16 figure
The ANTARES Collaboration: Contributions to ICRC 2017 Part II: The multi-messenger program
Papers on the ANTARES multi-messenger program, prepared for the 35th
International Cosmic Ray Conference (ICRC 2017, Busan, South Korea) by the
ANTARES Collaboratio
The ANTARES Collaboration: Contributions to ICRC 2017 Part I: Neutrino astronomy (diffuse fluxes and point sources)
Papers on neutrino astronomy (diffuse fluxes and point sources, prepared for
the 35th International Cosmic Ray Conference (ICRC 2017, Busan, South Korea) by
the ANTARES Collaboratio
Inclusive production of and mesons in charged current interactions
The inclusive production of the meson resonances ,
and in neutrino-nucleus charged current interactions has been
studied with the NOMAD detector exposed to the wide band neutrino beam
generated by 450 GeV protons at the CERN SPS. For the first time the
meson is observed in neutrino interactions. The statistical
significance of its observation is 6 standard deviations. The presence of
in neutrino interactions is reliably established. The average
multiplicity of these three resonances is measured as a function of several
kinematic variables. The experimental results are compared to the
multiplicities obtained from a simulation based on the Lund model. In addition,
the average multiplicity of in antineutrino - nucleus
interactions is measured.Comment: 23 pages, 14 figures, 8 tables. To appear in Nucl. Phys.
The ANTARES Collaboration: Contributions to ICRC 2017 Part III: Searches for dark matter and exotics, neutrino oscillations and detector calibration
Papers on the searches for dark matter and exotics, neutrino oscillations and
detector calibration, prepared for the 35th International Cosmic Ray Conference
(ICRC 2017, Busan, South Korea) by the ANTARES Collaboratio
Status and Recent Results of the Acoustic Neutrino Detection Test System AMADEUS
The AMADEUS system is an integral part of the ANTARES neutrino telescope in
the Mediterranean Sea. The project aims at the investigation of techniques for
acoustic neutrino detection in the deep sea. Installed at a depth of more than
2000m, the acoustic sensors of AMADEUS are based on piezo-ceramics elements for
the broad-band recording of signals with frequencies ranging up to 125kHz.
AMADEUS was completed in May 2008 and comprises six "acoustic clusters", each
one holding six acoustic sensors that are arranged at distances of roughly 1m
from each other. The clusters are installed with inter-spacings ranging from
15m to 340m. Acoustic data are continuously acquired and processed at a
computer cluster where online filter algorithms are applied to select a
high-purity sample of neutrino-like signals. 1.6 TB of data were recorded in
2008 and 3.2 TB in 2009. In order to assess the background of neutrino-like
signals in the deep sea, the characteristics of ambient noise and transient
signals have been investigated. In this article, the AMADEUS system will be
described and recent results will be presented.Comment: 7 pages, 8 figures. Proceedings of ARENA 2010, the 4th International
Workshop on Acoustic and Radio EeV Neutrino Detection Activitie
Search for the exotic resonance in the NOMAD experiment
A search for exotic Theta baryon via Theta -> proton +Ks decay mode in the
NOMAD muon neutrino DIS data is reported. The special background generation
procedure was developed. The proton identification criteria are tuned to
maximize the sensitivity to the Theta signal as a function of xF which allows
to study the Theta production mechanism. We do not observe any evidence for the
Theta state in the NOMAD data. We provide an upper limit on Theta production
rate at 90% CL as 2.13 per 1000 of neutrino interactions.Comment: Accepted to European Physics Journal
- …
