378 research outputs found

    Two-stage gas measurement system

    Get PDF
    A quick-response, real-time gaseous measurement system allows for the continuous sampling of a low pressure gaseous environment. A sample of test gas from the low pressure gaseous environment is continuously extracted and pumped to a structural tee joint which is open to the atmosphere at one end to maintain the test gas at a constant pressure. The structural tee joint communicates at the other end with a heater for maintaining the test gas at a constant temperature. From the heater, the test gas is sent to a sensor which develops a voltage that is proportional to the partial pressure of the gaseous component to be measured in the test gas, a constant flow rate of test gas being provided through the heater and sensor. Since test gas pressure, temperature, and flow rate are being held constant, changes in sensor voltage are attributable only to changes in the concentration of the measured gas component

    Breadth of Vaccinated Cancer Patient Humoral Response to SARS-CoV-2 Spike Protein and RBD Variants

    Get PDF
    SARS-CoV-2, the virus responsible for the COVID-19 of which several variants have emerged, such as the B.1.351 SARS-CoV-2 variant. The Receptor Binding Domain (RBD), located within the Spike protein is an immunogenic epitope for potent neutralizing antibodies. Current mRNA vaccines encode for the Spike protein, allowing the body to build antigen-specific antibodies. Assays measuring protective antibodies are essential to manage the COVID-19 pandemic and can be used as a platform for variant screening. RBD-foldon 2.2 is a novel antigen produced by fusing RBD with the trimerization domain Fibritin from Bacteriophage T4. Its amino acid sequence is based on the original Wuhan strain. (Breckenridge, 2021). B.1.351 RBD-foldon 2.2 antigen is identical to RBD-foldon 2.2, except it uses the B.1.351 variant RBD sequence. Using cancer patient sera samples, the breadth and robustness of response was examined in comparison to patients that indicated “no chronic conditions”. We hypothesized there would be a difference in humoral response to RBD-variant antigens in COVID-19 vaccinated cancer patients undergoing treatment vs patients with no chronic conditions. For sample selection, cancer patients were age/sex matched to individuals with no underlying health conditions, that received the same mRNA vaccine within 2 weeks of each other. To quantify antibody levels, ELISA end-point titers were performed. ELISAs detected levels of IgG and IgA antibodies against Spike, RBD-foldon, RBD-foldon 2.2, and RBD-foldon B.1.351. (Bushau, 2021). The statistical analysis used was a two-tailed student’s t-test to compare mean value of end-point titers between experimental and control groups. No significant difference between experimental and control groups for any antibody-antigen combination. B.1.351 RBD-foldon appears to elicit a lower response than RBD-foldon 2.2. Lower response may be explained by the mRNA sequence used in current vaccines encodes for original Wuhan SARS-CoV-2 spike protein. The platform is predictive of the level of antibody protection for variant screening

    The structural properties of the multi-layer graphene/4H-SiC(000-1) system as determined by Surface X-ray Diffraction

    Full text link
    We present a structural analysis of the multi-layer graphene-4HSiC(000-1}) system using Surface X-Ray Reflectivity. We show for the first time that graphene films grown on the C-terminated (000-1}) surface have a graphene-substrate bond length that is very short (0.162nm). The measured distance rules out a weak Van der Waals interaction to the substrate and instead indicates a strong bond between the first graphene layer and the bulk as predicted by ab-initio calculations. The measurements also indicate that multi-layer graphene grows in a near turbostratic mode on this surface. This result may explain the lack of a broken graphene symmetry inferred from conduction measurements on this system [C. Berger et al., Science 312, 1191 (2006)].Comment: 9 pages with 6 figure

    Localization of Dirac electrons by Moire patterns in graphene bilayers

    Full text link
    We study the electronic structure of two Dirac electron gazes coupled by a periodic Hamiltonian such as it appears in rotated graphene bilayers. Ab initio and tight-binding approaches are combined and show that the spatially periodic coupling between the two Dirac electron gazes can renormalize strongly their velocity. We investigate in particular small angles of rotation and show that the velocity tends to zero in this limit. The localization is confirmed by an analysis of the eigenstates which are localized essentially in the AA zones of the Moire patterns.Comment: 4 pages, 5 figure

    30 inch Roll-Based Production of High-Quality Graphene Films for Flexible Transparent Electrodes

    Full text link
    We report that 30-inch scale multiple roll-to-roll transfer and wet chemical doping considerably enhance the electrical properties of the graphene films grown on roll-type Cu substrates by chemical vapor deposition. The resulting graphene films shows a sheet resistance as low as ~30 Ohm/sq at ~90 % transparency which is superior to commercial transparent electrodes such as indium tin oxides (ITO). The monolayer of graphene shows sheet resistances as low as ~125 Ohm/sq with 97.4% optical transmittance and half-integer quantum Hall effect, indicating the high-quality of these graphene films. As a practical application, we also fabricated a touch screen panel device based on the graphene transparent electrodes, showing extraordinary mechanical and electrical performances

    Room temperature broadband coherent terahertz emission induced by dynamical photon drag in graphene

    Get PDF
    Nonlinear couplings between photons and electrons in new materials give rise to a wealth of interesting nonlinear phenomena. This includes frequency mixing, optical rectification or nonlinear current generation, which are of particular interest for generating radiation in spectral regions that are difficult to access, such as the terahertz gap. Owing to its specific linear dispersion and high electron mobility at room temperature, graphene is particularly attractive for realizing strong nonlinear effects. However, since graphene is a centrosymmetric material, second-order nonlinearities a priori cancel, which imposes to rely on less attractive third-order nonlinearities. It was nevertheless recently demonstrated that dc-second-order nonlinear currents as well as ultrafast ac-currents can be generated in graphene under optical excitation. The asymmetry is introduced by the excitation at oblique incidence, resulting in the transfer of photon momentum to the electron system, known as the photon drag effect. Here, we show broadband coherent terahertz emission, ranging from about 0.1-4 THz, in epitaxial graphene under femtosecond optical excitation, induced by a dynamical photon drag current. We demonstrate that, in contrast to most optical processes in graphene, the next-nearest-neighbor couplings as well as the distinct electron-hole dynamics are of paramount importance in this effect. Our results indicate that dynamical photon drag effect can provide emission up to 60 THz opening new routes for the generation of ultra-broadband terahertz pulses at room temperature.Comment: 17 pages, 3 figure
    corecore