404 research outputs found

    Elasticity Theory and Shape Transitions of Viral Shells

    Full text link
    Recently, continuum elasticity theory has been applied to explain the shape transition of icosahedral viral capsids - single-protein-thick crystalline shells - from spherical to buckled/faceted as their radius increases through a critical value determined by the competition between stretching and bending energies of a closed 2D elastic network. In the present work we generalize this approach to capsids with non-icosahedral symmetries, e.g., spherocylindrical and conical shells. One key new physical ingredient is the role played by nonzero spontaneous curvature. Another is associated with the special way in which the energy of the twelve topologically-required five-fold sites depends on the background local curvature of the shell in which they are embedded. Systematic evaluation of these contributions leads to a shape phase diagram in which transitions are observed from icosahedral to spherocylindrical capsids as a function of the ratio of stretching to bending energies and of the spontaneous curvature of the 2D protein network. We find that the transition from icosahedral to spherocylindrical symmetry is continuous or weakly first-order near the onset of buckling, leading to extensive shape degeneracy. These results are discussed in the context of experimentally observed variations in the shapes of a variety of viral capsids.Comment: 53 pages, 17 figure

    Mobility and survival of Salmonella Typhimurium and human adenovirus from spiked sewage sludge applied to soil columns

    Get PDF
    Aims: This study investigated the survival and transport of sewage sludge-borne pathogenic organisms in soils. Methods and Results: Undisturbed soil cores were treated with Salmonella enterica ssp. enterica serovar Typhimurium-lux (STM-lux) and human adenovirus (HAdV)-spiked sewage sludge. Following an artificial rainfall event, these pathogens were analysed in the leachate and soil sampled from different depths (0-5 cm, 5-10 cm and 10-20 cm) after 24 h, 1 and 2 months. Significantly more STM-lux and HAdV leached through the soil cores when sewage sludge was present. Significantly more STM-lux were found at all soil depths, at all time periods in the sewage sludge treatments, compared to the controls. The rate of decline of STM-lux in the controls was more rapid than in the sewage sludge treatments. Survival and transport of HAdV were minimal. Conclusions: The presence of sewage sludge can significantly influence the transport and survival of bacterial pathogens in soils, probably because of the presence of organic matter. Environmental contamination by virus is unlikely because of strong soil adsorption. Significance and Impact of the Study: This study suggests that groundwater contamination from vertical movement of pathogens is a potential risk and that it highlights the importance of the treatment requirements for biosolids prior to their application to land

    The utility of pathway selective estrogen receptor ligands that inhibit nuclear factor-κB transcriptional activity in models of rheumatoid arthritis

    Get PDF
    Rheumatoid arthritis (RA) is a chronic inflammatory disease that produces synovial proliferation and joint erosions. The pathologic lesions of RA are driven through the production of inflammatory mediators in the synovium mediated, in part, by the transcription factor NF-κB. We have identified a non-steroidal estrogen receptor ligand, WAY-169916, that selectively inhibits NF-κB transcriptional activity but is devoid of conventional estrogenic activity. The activity of WAY-169916 was monitored in two models of arthritis, the HLA-B27 transgenic rat and the Lewis rat adjuvant-induced model, after daily oral administration. In both models, a near complete reversal in hindpaw scores was observed as well as marked improvements in the histological scores. In the Lewis rat adjuvant model, WAY-169916 markedly suppresses the adjuvant induction of three serum acute phase proteins: haptoglobin, α1-acid glycoprotein (α1-AGP), and C-reactive protein (CRP). Gene expression experiments also demonstrate a global suppression of adjuvant-induced gene expression in the spleen, liver, and popliteal lymph nodes. Finally, WAY-169916 was effective in suppressing tumor necrosis factor-α-mediated inflammatory gene expression in fibroblast-like synoviocytes isolated from patients with RA. Together, these data suggest the utility of WAY-169916, and other compounds in its class, in treating RA through global suppression of inflammation via selective blockade of NF-κB transcriptional activity

    Virus Capsid Dissolution Studied by Microsecond Molecular Dynamics Simulations

    Get PDF
    Dissolution of many plant viruses is thought to start with swelling of the capsid caused by calcium removal following infection, but no high-resolution structures of swollen capsids exist. Here we have used microsecond all-atom molecular simulations to describe the dynamics of the capsid of satellite tobacco necrosis virus with and without the 92 structural calcium ions. The capsid expanded 2.5% upon removal of the calcium, in good agreement with experimental estimates. The water permeability of the native capsid was similar to that of a phospholipid membrane, but the permeability increased 10-fold after removing the calcium, predominantly between the 2-fold and 3-fold related subunits. The two calcium binding sites close to the icosahedral 3-fold symmetry axis were pivotal in the expansion and capsid-opening process, while the binding site on the 5-fold axis changed little structurally. These findings suggest that the dissociation of the capsid is initiated at the 3-fold axis

    Mechanical and Assembly Units of Viral Capsids Identified via Quasi-Rigid Domain Decomposition

    Get PDF
    Key steps in a viral life-cycle, such as self-assembly of a protective protein container or in some cases also subsequent maturation events, are governed by the interplay of physico-chemical mechanisms involving various spatial and temporal scales. These salient aspects of a viral life cycle are hence well described and rationalised from a mesoscopic perspective. Accordingly, various experimental and computational efforts have been directed towards identifying the fundamental building blocks that are instrumental for the mechanical response, or constitute the assembly units, of a few specific viral shells. Motivated by these earlier studies we introduce and apply a general and efficient computational scheme for identifying the stable domains of a given viral capsid. The method is based on elastic network models and quasi-rigid domain decomposition. It is first applied to a heterogeneous set of well-characterized viruses (CCMV, MS2, STNV, STMV) for which the known mechanical or assembly domains are correctly identified. The validated method is next applied to other viral particles such as L-A, Pariacoto and polyoma viruses, whose fundamental functional domains are still unknown or debated and for which we formulate verifiable predictions. The numerical code implementing the domain decomposition strategy is made freely available

    Архетип свобода у контексті французької політичної теорії та історії

    Get PDF
    Розглянуто сучасні підходи щодо аналізу політичної ментальності. У межах політологічного аналізу окреслено коло проблем, які потребують вирішення з використанням підходів психології. Зроблено висновок про те, що архетип “свобода” становить важливий елемент політичної ментальності французів.Modern approaches of analysis of political mentality are considered. Within the limits of political science analysis outlined circle of problems which need decision with the use of approaches of psychology. A conclusion is done that archetype freedom makes the important element of political mentality of French’s

    Asymmetric Genome Organization in an RNA Virus Revealed via Graph-Theoretical Analysis of Tomographic Data

    Get PDF
    Cryo-electron microscopy permits 3-D structures of viral pathogens to be determined in remarkable detail. In particular, the protein containers encapsulating viral genomes have been determined to high resolution using symmetry averaging techniques that exploit the icosahedral architecture seen in many viruses. By contrast, structure determination of asymmetric components remains a challenge, and novel analysis methods are required to reveal such features and characterize their functional roles during infection. Motivated by the important, cooperative roles of viral genomes in the assembly of single-stranded RNA viruses, we have developed a new analysis method that reveals the asymmetric structural organization of viral genomes in proximity to the capsid in such viruses. The method uses geometric constraints on genome organization, formulated based on knowledge of icosahedrally-averaged reconstructions and the roles of the RNA-capsid protein contacts, to analyse cryo-electron tomographic data. We apply this method to the low-resolution tomographic data of a model virus and infer the unique asymmetric organization of its genome in contact with the protein shell of the capsid. This opens unprecedented opportunities to analyse viral genomes, revealing conserved structural features and mechanisms that can be targeted in antiviral drug desig
    corecore