136 research outputs found

    Operation of Multiple Reservoir Systems: A Case Study of the Upper Vistula System (An Introduction)

    Get PDF
    Water resource systems have been an important part of resources and environment related research at IIASA since its inception. As demands for water increase relative to supply, the intensity and efficiency of water resources management must be developed further. This in turn requires an increase in the degree of detail and sophistication of the analysis, including economic, social and environmental evaluation of water resources development alternatives aided by application of mathematical modeling techniques, to generate inputs for planning, design, and operational decisions. During the year of 1978 it was decided that parallel to the continuation of demand studies, an attempt would be made to integrate the results of our studies on water demands with water supply considerations. This new task was named "Regional Water Management" (Task 1, Resources and Environment Area). This paper is concerned with operational decision-making in the existing multiple reservoir systems. Following a short description of the case system, three different approaches to optimization of the system's operation are presented. First, the three-step stochastic implicit approach; second, the simulation approach; and third, the approach based on the concepts of hierarchical control systems. Distinction is made between the long-term reservoir operation rules and the short-term operational decisions using the real-time forecasts of reservoir inflows and water demands. The paper is part of a collaborative study on the operation of the Upper Vistula multiple reservoir system in Poland, carried out by the Institute for Meteorology and Water Management, Warsaw, Poland and IIASA

    The Influence of Tandem Mill Reduction on Double Reduced (DR) Tinplates Anisotropy

    Get PDF
    In this paper, influence of tandem mill reduction on double reduced tinplates anisotropy is presented. In order to achieve favourable anisotropy properties (deformation texture) of tinplates for deep drawing operations, optimal percentage reduction on tandem mill is important. The experiment was carried out in laboratory conditions and three sorts of materials (T 57, T 61 and T 65) were used. The anisotropy was classified by earing test determining the ear height of tinplate after deep drawing by measuring the height of any ear. Percentage reduction on tandem mill and final earing relationships of tinplates are researched

    Forgetting in Answer Set Programming with Anonymous Cycles

    Get PDF
    FORGET (PTDC/CCI-INF/32219/2017). NOVA LINCS (UID/CEC/04516/2019).It is now widely accepted that the operation of forgetting in the context of Answer Set Programming [10, 18] is best characterized by the so-called strong persistence, a property that requires that all existing relations between the atoms not to be forgotten be preserved. However, it has been shown that strong persistence cannot always be satisfied. What happens if we must nevertheless forget? One possibility that has been explored before is to consider weaker versions of strong persistence, although not without a cost: some relations between the atoms not to be forgotten are broken in the process. A different alternative is to enhance the logical language so that all such relations can be maintained after the forgetting operation. In this paper, we borrow from the recently introduced notion of fork [1] – a conservative extension of Equilibrium Logic and its monotonic basis, the logic of Here-and-There – which has been shown to be sufficient to overcome the problems related to satisfying strong persistence. We map this notion into the language of logic programs, enhancing it with so-called anonymous cycles, and we introduce a concrete syntactical forgetting operator over this enhanced language that we show to always obey strong persistence.publishe

    Application of <sup>14</sup>C analyses to source apportionment of carbonaceous PM<sub>2.5</sub> in the UK

    Get PDF
    Determination of the radiocarbon (&lt;sup&gt;14&lt;/sup&gt;C) content of airborne particulate matter yields insight into the proportion of the carbonaceous material derived from fossil and contemporary carbon sources. Daily samples of PM&lt;sub&gt;2.5&lt;/sub&gt; were collected by high-volume sampler at an urban background site in Birmingham, UK, and the fraction of &lt;sup&gt;14&lt;/sup&gt;C in both the total carbon, and in the organic and elemental carbon fractions, determined by two-stage combustion to CO&lt;sub&gt;2&lt;/sub&gt;, graphitisation and quantification by accelerator mass spectrometry. OC and EC content was also determined by Sunset Analyzer. The mean fraction contemporary TC in the PM&lt;sub&gt;2.5&lt;/sub&gt; samples was 0.50 (range 0.27–0.66, n = 26). There was no seasonality to the data, but there was a positive trend between fraction contemporary TC and magnitude of SOC/TC ratio and for the high values of these two parameters to be associated with air-mass back trajectories arriving in Birmingham from over land. Using a five-compartment mass balance model on fraction contemporary carbon in OC and EC, the following average source apportionment for the TC in these PM&lt;sub&gt;2.5&lt;/sub&gt; samples was derived: 27% fossil EC; 20% fossil OC; 2% biomass EC; 10% biomass OC; and 41% biogenic OC. The latter category will comprise, in addition to BVOC-derived SOC, other non-combustion contemporary carbon sources such as biological particles, vegetative detritus, humic material and tyre wear. The proportion of total PM&lt;sub&gt;2.5&lt;/sub&gt; at this location estimated to derive from BVOC-derived secondary organic aerosol was 9–29%. The findings from this work are consistent with those from elsewhere in Europe and support the conclusion of a significant and ubiquitous contribution from non-fossil biogenic sources to the carbon in terrestrial aerosol

    Biological/Biomedical Accelerator Mass Spectrometry Targets. 1. Optimizing the CO2 Reduction Step Using Zinc Dust

    Get PDF
    Biological and biomedical applications of accelerator mass spectrometry (AMS) use isotope ratio mass spectrometry to quantify minute amounts of long-lived radioisotopes such as 14C. AMS target preparation involves first the oxidation of carbon (in sample of interest) to CO2 and second the reduction of CO2 to filamentous, fluffy, fuzzy, or firm graphite-like substances that coat a −400-mesh spherical iron powder (−400MSIP) catalyst. Until now, the quality of AMS targets has been variable; consequently, they often failed to produce robust ion currents that are required for reliable, accurate, precise, and high-throughput AMS for biological/biomedical applications. Therefore, we described our optimized method for reduction of CO2 to high-quality uniform AMS targets whose morphology we visualized using scanning electron microscope pictures. Key features of our optimized method were to reduce CO2 (from a sample of interest that provided 1 mg of C) using 100 ± 1.3 mg of Zn dust, 5 ± 0.4 mg of −400MSIP, and a reduction temperature of 500 °C for 3 h. The thermodynamics of our optimized method were more favorable for production of graphite-coated iron powders (GCIP) than those of previous methods. All AMS targets from our optimized method were of 100% GCIP, the graphitization yield exceeded 90%, and ÎŽ13C was −17.9 ± 0.3‰. The GCIP reliably produced strong 12C− currents and accurate and precise Fm values. The observed Fm value for oxalic acid II NIST SRM deviated from its accepted Fm value of 1.3407 by only 0.0003 ± 0.0027 (mean ± SE, n = 32), limit of detection of 14C was 0.04 amol, and limit of quantification was 0.07 amol, and a skilled analyst can prepare as many as 270 AMS targets per day. More information on the physical (hardness/color), morphological (SEMs), and structural (FT-IR, Raman, XRD spectra) characteristics of our AMS targets that determine accurate, precise, and high-hroughput AMS measurement are in the companion paper

    Viral Protein Fragmentation May Broaden T-Cell Responses to HIV Vaccines

    Get PDF
    High mutation rates of human immunodeficiency virus (HIV) allows escape from T cell recognition preventing development of effective T cell vaccines. Vaccines that induce diverse T cell immune responses would help overcome this problem. Using SIV gag as a model vaccine, we investigated two approaches to increase the breadth of the CD8 T cell response. Namely, fusion of vaccine genes to ubiquitin to target the proteasome and increase levels of MHC class I peptide complexes and gene fragmentation to overcome competition between epitopes for presentation and recognition.three vaccines were compared: full-length unmodified SIV-mac239 gag, full-length gag fused at the N-terminus to ubiquitin and 7 gag fragments of equal size spanning the whole of gag with ubiquitin-fused to the N-terminus of each fragment. Genes were cloned into a replication defective adenovirus vector and immunogenicity assessed in an in vitro human priming system. The breadth of the CD8 T cell response, defined by the number of distinct epitopes, was assessed by IFN-Îł-ELISPOT and memory phenotype and cytokine production evaluated by flow cytometry. We observed an increase of two- to six-fold in the number of epitopes recognised in the ubiquitin-fused fragments compared to the ubiquitin-fused full-length gag. In contrast, although proteasomal targeting was achieved, there was a marked reduction in the number of epitopes recognised in the ubiquitin-fused full-length gag compared to the full-length unmodified gene, but there were no differences in the number of epitope responses induced by non-ubiquitinated full-length gag and the ubiquitin-fused mini genes. Fragmentation and ubiquitination did not affect T cell memory differentiation and polyfunctionality, though most responses were directed against the Ad5 vector.Fragmentation but not fusion with ubiquitin increases the breadth of the CD8 T vaccine response against SIV-mac239 gag. Thus gene fragmentation of HIV vaccines may maximise responses

    Environmental and Demographic Determinants of Avian Influenza Viruses in Waterfowl across the Contiguous United States

    Get PDF
    Outbreaks of avian influenza in North American poultry have been linked to wild waterfowl. A first step towards understanding where and when avian influenza viruses might emerge from North American waterfowl is to identify environmental and demographic determinants of infection in their populations. Laboratory studies indicate water temperature as one determinant of environmental viral persistence and we explored this hypothesis at the landscape scale. We also hypothesized that the interval apparent prevalence in ducks within a local watershed during the overwintering season would influence infection probabilities during the following breeding season within the same local watershed. Using avian influenza virus surveillance data collected from 19,965 wild waterfowl across the contiguous United States between October 2006 and September 2009 We fit Logistic regression models relating the infection status of individual birds sampled on their breeding grounds to demographic characteristics, temperature, and interval apparent prevalence during the preceding overwintering season at the local watershed scale. We found strong support for sex, age, and species differences in the probability an individual duck tested positive for avian influenza virus. In addition, we found that for every seven days the local minimum temperature fell below zero, the chance an individual would test positive for avian influenza virus increased by 5.9 percent. We also found a twelve percent increase in the chance an individual would test positive during the breeding season for every ten percent increase in the interval apparent prevalence during the prior overwintering season. These results suggest that viral deposition in water and sub-freezing temperatures during the overwintering season may act as determinants of individual level infection risk during the subsequent breeding season. Our findings have implications for future surveillance activities in waterfowl and domestic poultry populations. Further study is needed to identify how these drivers might interact with other host-specific infection determinants, such as species phylogeny, immunological status, and behavioral characteristics

    An automated, cost-effective and scalable, flood-and-drain based root phenotyping system for cereals

    Get PDF
    Background: Genetic studies on the molecular mechanisms of the regulation of root growth require the characterisation of a specific root phenotype to be linked with a certain genotype. Such studies using classical labour-intensive methods are severely hindered due to the technical limitations that are associated with the impeded observation of the root system of a plant during its growth. The aim of the research presented here was to develop a reliable, cost-effective method for the analysis of a plant root phenotype that would enable the precise characterisation of the root system architecture of cereals. Results: The presented method describes a complete system for automatic supplementation and continuous sensing of culture solution supplied to plants that are grown in transparent tubes containing a solid substrate. The presented system comprises the comprehensive pipeline consisting of a modular-based and remotely-controlled plant growth system and customized imaging setup for root and shoot phenotyping. The system enables an easy extension of the experimental capacity in order to form a combined platform that is comprised of parallel modules, each holding up to 48 plants. The conducted experiments focused on the selection of the most suitable conditions for phenotyping studies in barley: an optimal size of the glass beads, diameters of the acrylic tubes, composition of a medium, and a rate of the medium flow. Conclusions: The developed system enables an efficient, accurate and highly repeatable analysis of the morphological features of the root system of cereals. Because a simple and fully-automated control system is used, the experimental conditions can easily be normalised for different species of cereals. The scalability of the module-based system allows its capacity to be adjusted in order to meet the requirements of a particular experiment

    Exploding the castle : rethinking how video games and game mechanics can shape the future of education

    No full text
    Comprend des rĂ©fĂ©rences bibliographiques.Lacking a digital crystal ball, we cannot predict the future of education or the precise instructional role games will have going forward. Yet we can safely say that games will play some role in the future of K?12 and higher education, and members of the games community will have to choose between being passive observers or active, progressive contributors to the complex and often political process of weaving together pedagogy, technology, and culture. This will involve agreeing that games—or, more specifically, game mechanics and the engagement in joyful learning that they engender—are not only critical for shaping online and classroom instruction but also the evolution of schooling as a whole
    • 

    corecore