485 research outputs found
Estimating Column Density in Molecular Clouds with FIR and Sub-mm Emission Maps
We have used a numerical simulation of a turbulent cloud to synthesize maps
of the thermal emission from dust at a variety of far-IR and sub-mm
wavelengths. The average column density and external radiation field in the
simulation is well matched to clouds such as Perseus and Ophiuchus. We use
pairs of single-wavelength emission maps to derive the dust color temperature
and column density, and we compare the derived column densities with the true
column density. We demonstrate that longer wavelength emission maps yield less
biased estimates of column density than maps made towards the peak of the dust
emission spectrum. We compare the scatter in the derived column density with
the observed scatter in Perseus and Ophiuchus. We find that while in Perseus
all of the observed scatter in the emission-derived versus the
extinction-derived column density can be attributed to the flawed assumption of
isothermal dust along each line of sight, in Ophiuchus there is additional
scatter above what can be explained by the isothermal assumption. Our results
imply that variations in dust emission properties within a molecular cloud are
not necessarily a major source of uncertainty in column density measurements.Comment: Accepted to ApJ Letter
Abundant cyanopolyynes as a probe of infall in the Serpens South cluster-forming region
We have detected bright HC7N J = 21-20 emission toward multiple locations in
the Serpens South cluster-forming region using the K-Band Focal Plane Array at
the Robert C. Byrd Green Bank Telescope. HC7N is seen primarily toward cold
filamentary structures that have yet to form stars, largely avoiding the dense
gas associated with small protostellar groups and the main central cluster of
Serpens South. Where detected, the HC7N abundances are similar to those found
in other nearby star forming regions. Toward some HC7N `clumps', we find
consistent variations in the line centroids relative to NH3 (1,1) emission, as
well as systematic increases in the HC7N non-thermal line widths, which we
argue reveal infall motions onto dense filaments within Serpens South with
minimum mass accretion rates of M ~ 2-5 M_sun Myr^-1. The relative abundance of
NH3 to HC7N suggests that the HC7N is tracing gas that has been at densities n
~ 10^4 cm^-3, for timescales t < 1-2 x 10^5 yr. Since HC7N emission peaks are
rarely co-located with those of either NH3 or continuum, it is likely that
Serpens South is not particularly remarkable in its abundance of HC7N, but
instead the serendipitous mapping of HC7N simultaneously with NH3 has allowed
us to detect HC7N at low abundances in regions where it otherwise may not have
been looked for. This result extends the known star-forming regions containing
significant HC7N emission from typically quiescent regions, like the Taurus
molecular cloud, to more complex, active environments.Comment: 19 pages, 13 figures, accepted to MNRAS. Version with full resolution
figures available at http://www.dunlap.utoronto.ca/~friesen/Friesen_HC7N.pd
Evidence for dust evolution within the Taurus Complex from Spitzer images
We present Spitzer images of the Taurus Complex (TC) and take advantage of
the sensitivity and spatial resolution of the observations to characterize the
diffuse IR emission across the cloud. This work highlights evidence of dust
evolution within the translucent sections of the archetype reference for
studies of quiescent molecular clouds. We combine Spitzer 160 um and IRAS 100
um observations to produce a dust temperature map and a far-IR dust opacity map
at 5' resolution. The average dust temperature is about 14.5K with a dispersion
of +/-1K across the cloud. The far-IR dust opacity is a factor 2 larger than
the average value for the diffuse ISM. This opacity increase and the
attenuation of the radiation field (RF) both contribute to account for the
lower emission temperature of the large grains. The structure of the TC
significantly changes in the mid-IR images that trace emission from PAHs and
VSGs. We focus our analysis of the mid-IR emission to a range of ecliptic
latitudes where the zodiacal light residuals are small. Within this cloud area,
there are no 8 and 24 um counterparts to the brightest 160 um emission
features. Conversely, the 8 and 24 um images reveal filamentary structure that
is strikingly inconspicuous in the 160 um and extinction maps. The IR colors
vary over sub-parsec distances across this filamentary structure. We compare
the observed colors with model calculations quantifying the impact of the RF
intensity and the abundance of stochastically heated particles on the dust SED.
To match the range of observed colors, we have to invoke variations by a factor
of a few of both the interstellar RF and the abundance of PAHs and VSGs. We
conclude that within this filamentary structure a significant fraction of the
dust mass cycles in and out the small size end of the dust size distribution.Comment: 43 pages, 13 figures, accepted for publication in Ap
TMC-1C: an accreting starless core
We have mapped the starless core TMC-1C in a variety of molecular lines with
the IRAM 30m telescope. High density tracers show clear signs of
self-absorption and sub-sonic infall asymmetries are present in N2H+ (1-0) and
DCO+ (2-1) lines. The inward velocity profile in N2H+ (1-0) is extended over a
region of about 7,000 AU in radius around the dust continuum peak, which is the
most extended ``infalling'' region observed in a starless core with this
tracer. The kinetic temperature (~12 K) measured from C17O and C18O suggests
that their emission comes from a shell outside the colder interior traced by
the mm continuum dust. The C18O (2-1) excitation temperature drops from 12 K to
~10 K away from the center. This is consistent with a volume density drop of
the gas traced by the C18O lines, from ~4x10^4 cm^-3 towards the dust peak to
~6x10^3 cm^-3 at a projected distance from the dust peak of 80" (or 11,000 AU).
The column density implied by the gas and dust show similar N2H+ and CO
depletion factors (f_D < 6). This can be explained with a simple scenario in
which: (i) the TMC-1C core is embedded in a relatively dense environment (H2
~10^4 cm^-3), where CO is mostly in the gas phase and the N2H+ abundance had
time to reach equilibrium values; (ii) the surrounding material (rich in CO and
N2H+) is accreting onto the dense core nucleus; (iii) TMC-1C is older than
3x10^5 yr, to account for the observed abundance of N2H+ across the core
(~10^-10 w.r.t. H2); and (iv) the core nucleus is either much younger (~10^4
yr) or ``undepleted'' material from the surrounding envelope has fallen towards
it in the past 10,000 yr.Comment: 29 pages, including 5 tables and 15 figure
Constraining Radon Backgrounds in LZ
The LZ dark matter detector, like many other rare-event searches, will suffer
from backgrounds due to the radioactive decay of radon daughters. In order to
achieve its science goals, the concentration of radon within the xenon should
not exceed Bq/kg, or 20 mBq total within its 10 tonnes. The LZ
collaboration is in the midst of a program to screen all significant components
in contact with the xenon. The four institutions involved in this effort have
begun sharing two cross-calibration sources to ensure consistent measurement
results across multiple distinct devices. We present here five preliminary
screening results, some mitigation strategies that will reduce the amount of
radon produced by the most problematic components, and a summary of the current
estimate of radon emanation throughout the detector. This best estimate totals
mBq, sufficiently low to meet the detector's science goals.Comment: Low Radioactivity Techniques (LRT) 2017 Workshop Proceedings. 6
pages; 3 figure
MAMBO Mapping of Spitzer c2d Small Clouds and Cores
AIMS: To study the structure of nearby (< 500 pc) dense starless and
star-forming cores with the particular goal to identify and understand
evolutionary trends in core properties, and to explore the nature of Very Low
Luminosity Objects (< 0.1 L_sun; VeLLOs). METHODS: Using the MAMBO bolometer
array, we create maps unusually sensitive to faint (few mJy per beam) extended
(approx. 5 arcmin) thermal dust continuum emission at 1.2 mm wavelength.
Complementary information on embedded stars is obtained from Spitzer, IRAS, and
2MASS. RESULTS: Our maps are very rich in structure, and we characterize
extended emission features (``subcores'') and compact intensity peaks in our
data separately to pay attention to this complexity. We derive, e.g., sizes,
masses, and aspect ratios for the subcores, as well as column densities and
related properties for the peaks. Combination with archival infrared data then
enables the derivation of bolometric luminosities and temperatures, as well as
envelope masses, for the young embedded stars. CONCLUSIONS: (abridged) Starless
and star-forming cores occupy the same parameter space in many core properties;
a picture of dense core evolution in which any dense core begins to actively
form stars once it exceeds some fixed limit in, e.g., mass, density, or both,
is inconsistent with our data. Comparison of various evolutionary indicators
for young stellar objects in our sample (e.g., bolometric temperatures) reveals
inconsistencies between some of them, possibly suggesting a revision of some of
these indicators.Comment: Accepted to A&A. In total 46 pages, with 20 pages of tables, figures,
and appendices. High-resolution version of this article at
https://www.xythosondemand.com/home/harvard_iic/Users/jkauffma/Public/mambo_spitzer.pd
Pulmonary vasoconstrictor action of KCNQ potassium channel blockers
KCNQ channels have been widely studied in the nervous system, heart and inner ear, where they have important physiological functions. Recent reports indicate that KCNQ channels may also be expressed in portal vein where they are suggested to influence spontaneous contractile activity. The biophysical properties of K+ currents mediated by KCNQ channels resemble a current underlying the resting K+ conductance and resting potential of pulmonary artery smooth muscle cells. We therefore investigated a possible role of KCNQ channels in regulating the function of pulmonary arteries by determining the ability of the selective KCNQ channel blockers, linopirdine and XE991, to promote pulmonary vasoconstriction. Linopirdine and XE991 both contracted rat and mouse pulmonary arteries but had little effect on mesenteric arteries. In each case the maximum contraction was almost as large as the response to 50 mM K+. Linopirdine had an EC50 of around 1 ÎŒM and XE991 was almost 10-fold more potent. Neither removal of the endothelium nor exposure to phentolamine or α,ÎČ-methylene ATP, to block α1-adrenoceptors or P2X receptors, respectively, affected the contraction. Contraction was abolished in Ca2+-free solution and in the presence of 1 ÎŒM nifedipine or 10 ÎŒM levcromakalim
Density and Temperature Structure of TMC-1C from 450 and 850 micron Maps
We have mapped the central 10'x10' of the dense core TMC-1C at 450 and 850
microns using SCUBA on the James Clerk Maxwell Telescope. The unusually high
quality of the 450 micron map allows us to make a detailed analysis of the
temperature and column density profiles of the core. We find that the dust
temperature at the center of TMC-1C is 7 K, rising to 11 K at the edges. We
discuss the possibility and effects of a variable emissivity spectral index on
the derived mass profile. The low dust temperature of TMC-1C results in a high
derived mass for the core, significantly larger than the virial mass estimated
from the linewidth of the N2H+ (1-0) transition. This result is valid within a
wide range of dust properties and ellipticities of the core. The N2H+ (1-0)
spectra, taken with the IRAM 30m telescope, show signs of self-absorption,
which provide evidence of sub-sonic infall motions. The derived density profile
and infall velocity is compared to the predictions of several popular star
formation models, and the Bonnor-Ebert model isthe best fit analytic model.Comment: 38 pages, 13 Figures, accepted to Ap
- âŠ