18 research outputs found

    Spherically symmetric steady states of galactic dynamics in scalar gravity

    Full text link
    The kinetic motion of the stars of a galaxy is considered within the framework of a relativistic scalar theory of gravitation. This model, even though unphysical, may represent a good laboratory where to study in a rigorous, mathematical way those problems, like the influence of the gravitational radiation on the dynamics, which are still beyond our present understanding of the physical model represented by the Einstein--Vlasov system. The present paper is devoted to derive the equations of the model and to prove the existence of spherically symmetric equilibria with finite radius.Comment: 13 pages, mistypos correcte

    Global existence of classical solutions to the Vlasov-Poisson system in a three dimensional, cosmological setting

    Get PDF
    The initial value problem for the Vlasov-Poisson system is by now well understood in the case of an isolated system where, by definition, the distribution function of the particles as well as the gravitational potential vanish at spatial infinity. Here we start with homogeneous solutions, which have a spatially constant, non-zero mass density and which describe the mass distribution in a Newtonian model of the universe. These homogeneous states can be constructed explicitly, and we consider deviations from such homogeneous states, which then satisfy a modified version of the Vlasov-Poisson system. We prove global existence and uniqueness of classical solutions to the corresponding initial value problem for initial data which represent spatially periodic deviations from homogeneous states.Comment: 23 pages, Latex, report #

    Application of Uncertainty Modeling Frameworks to Uncertain Isosurface Extraction

    Full text link
    Abstract. Proper characterization of uncertainty is a challenging task. Depend-ing on the sources of uncertainty, various uncertainty modeling frameworks have been proposed and studied in the uncertainty quantification literature. This pa-per applies various uncertainty modeling frameworks, namely possibility theory, Dempster-Shafer theory and probability theory to isosurface extraction from un-certain scalar fields. It proposes an uncertainty-based marching cubes template as an abstraction of the conventional marching cubes algorithm with a flexible uncertainty measure. The applicability of the template is demonstrated using 2D simulation data in weather forecasting and computational fluid dynamics and a synthetic 3D dataset

    A new variational approach to the stability of gravitational systems

    Get PDF
    We consider the three dimensional gravitational Vlasov Poisson system which describes the mechanical state of a stellar system subject to its own gravity. A well-known conjecture in astrophysics is that the steady state solutions which are nonincreasing functions of their microscopic energy are nonlinearly stable by the flow. This was proved at the linear level by several authors based on the pioneering work by Antonov in 1961. Since then, standard variational techniques based on concentration compactness methods as introduced by P.-L. Lions in 1983 have led to the nonlinear stability of subclasses of stationary solutions of ground state type. In this paper, inspired by pioneering works from the physics litterature (Lynden-Bell 94, Wiechen-Ziegler-Schindler MNRAS 88, Aly MNRAS 89), we use the monotonicity of the Hamiltonian under generalized symmetric rearrangement transformations to prove that non increasing steady solutions are local minimizer of the Hamiltonian under equimeasurable constraints, and extract compactness from suitable minimizing sequences. This implies the nonlinear stability of nonincreasing anisotropic steady states under radially symmetric perturbations

    The Einstein-Vlasov sytem/Kinetic theory

    Get PDF
    The main purpose of this article is to guide the reader to theorems on global properties of solutions to the Einstein-Vlasov system. This system couples Einstein's equations to a kinetic matter model. Kinetic theory has been an important field of research during several decades where the main focus has been on nonrelativistic- and special relativistic physics, e.g. to model the dynamics of neutral gases, plasmas and Newtonian self-gravitating systems. In 1990 Rendall and Rein initiated a mathematical study of the Einstein-Vlasov system. Since then many theorems on global properties of solutions to this system have been established. The Vlasov equation describes matter phenomenologically and it should be stressed that most of the theorems presented in this article are not presently known for other such matter models (e.g. fluid models). The first part of this paper gives an introduction to kinetic theory in non-curved spacetimes and then the Einstein-Vlasov system is introduced. We believe that a good understanding of kinetic theory in non-curved spacetimes is fundamental in order to get a good comprehension of kinetic theory in general relativity.Comment: 31 pages. This article has been submitted to Living Rev. Relativity (http://www.livingreviews.org

    Stable Models of Elliptical Galaxies

    Get PDF
    We construct stable axially symmetric models of elliptical galaxies. The particle density on phase space for these models depends monotonically on the particle energy and on the third component of the angular momentum. They are obtained as minimizers of suitably defined energy-Casimir functionals, and this implies their nonlinear stability. Since our analysis proceeds from a rigorous but purely mathematical point of view it should be interesting to determine if any of our models match observational data in astrophysics. The main purpose of these notes is to initiate some exchange of information between the astrophysics and the mathematics communities.Comment: 26 page

    Violent Relaxation, Phase Mixing, and Gravitational Landau Damping

    Get PDF
    This paper proposes a geometric interpretation of flows generated by the collisionless Boltzmann equation (CBE), focusing on the coarse-grained approach towards equilibrium. The CBE is a noncanonical Hamiltonian system with the distribution function f the fundamental dynamical variable, the mean field energy H[f] playing the role of the Hamiltonian and the natural arena of physics being the infinite-dimensional phase space of distribution functions. Every time-independent equilibrium f_0 is an energy extremal with respect to all perturbations that preserve the constraints associated with Liouville's Theorem, local energy minima corresponding to linearly stable equilibria. If an initial f(t=0) is sufficiently close to some linearly stable lower energy f_0, its evolution involves linear phase space oscillations about f_0 which, in many cases, would be expected to exhibit linear Landau damping. If f(t=0) is far from any stable extremal, the flow will be more complicated but, in general, one would anticipate that the evolution involves nonlinear oscillations about some lower energy f_0. In this picture, the coarse-grained approach towards equilibrium usually termed violent relaxation is interpreted as nonlinear Landau damping. The evolution of a generic initial f(t=0) involves a coherent initial excitation, not necessarily small, being converted into incoherent motion associated with nonlinear oscillations about some equilibrium f_0 which, in general, will exhibit destructive interference.Comment: 19 pages, LaTeX, no macros, no figure

    Theorems on existence and global dynamics for the Einstein equations

    Get PDF
    This article is a guide to theorems on existence and global dynamics of solutions of the Einstein equations. It draws attention to open questions in the field. The local-in-time Cauchy problem, which is relatively well understood, is surveyed. Global results for solutions with various types of symmetry are discussed. A selection of results from Newtonian theory and special relativity that offer useful comparisons is presented. Treatments of global results in the case of small data and results on constructing spacetimes with prescribed singularity structure or late-time asymptotics are given. A conjectural picture of the asymptotic behaviour of general cosmological solutions of the Einstein equations is built up. Some miscellaneous topics connected with the main theme are collected in a separate section.Comment: Submitted to Living Reviews in Relativity, major update of Living Rev. Rel. 5 (2002)

    Adhesive Gravitational Clustering

    Full text link
    The notion of `adhesion' has been advanced for the phenomenon of stabilization of large-scale structure emerging from gravitational instability of a cold medium. Recently, the physical origin of adhesion has been identified: a systematic derivation of the equations of motion for the density and the velocity fields leads naturally to the key equation of the `adhesion approximation' - however, under a set of strongly simplifying assumptions. In this work, we provide an evaluation of the current status of adhesive gravitational clustering and a clear explanation of the assumptions involved. Furthermore, we propose systematic generalizations with the aim to relax some of the simplifying assumptions. We start from the general Newtonian evolution equations for self-gravitating particles on an expanding Friedmann background and recover the popular `dust model' (pressureless fluid), which breaks down after the formation of density singularities; then we investigate, in a unified framework, two other models which, under the restrictions referred to above, lead to the `adhesion approximation'. We apply the Eulerian and Lagrangian perturbative expansions to these new models and, finally, we discuss some non-perturbative results that may serve as starting points for workable approximations of non-linear structure formation in the multi-stream regime. In particular, we propose a new approximation that includes, in limiting cases, the standard `adhesion model' and the Eulerian as well as Lagrangian first-order approximations.Comment: LateX, 23 pages, uses A&A documentclass, matches published version in Astronomy & Astrophysics; appendices published onlin

    On Landau damping

    Get PDF
    Going beyond the linearized study has been a longstanding problem in the theory of Landau damping. In this paper we establish exponential Landau damping in analytic regularity. The damping phenomenon is reinterpreted in terms of transfer of regularity between kinetic and spatial variables, rather than exchanges of energy; phase mixing is the driving mechanism. The analysis involves new families of analytic norms, measuring regularity by comparison with solutions of the free transport equation; new functional inequalities; a control of nonlinear echoes; sharp scattering estimates; and a Newton approximation scheme. Our results hold for any potential no more singular than Coulomb or Newton interaction; the limit cases are included with specific technical effort. As a side result, the stability of homogeneous equilibria of the nonlinear Vlasov equation is established under sharp assumptions. We point out the strong analogy with the KAM theory, and discuss physical implications.Comment: News: (1) the main result now covers Coulomb and Newton potentials, and (2) some classes of Gevrey data; (3) as a corollary this implies new results of stability of homogeneous nonmonotone equilibria for the gravitational Vlasov-Poisson equatio
    corecore