890 research outputs found

    Value Computations in Ventral Medial Prefrontal Cortex during Charitable Decision Making Incorporate Input from Regions Involved in Social Cognition

    Get PDF
    Little is known about the neural networks supporting value computation during complex social decisions. We investigated this question using functional magnetic resonance imaging while subjects made donations to different charities. We found that the blood oxygenation level-dependent signal in ventral medial prefrontal cortex (VMPFC) correlated with the subjective value of voluntary donations. Furthermore, the region of the VMPFC identified showed considerable overlap with regions that have been shown to encode for the value of basic rewards at the time of choice, suggesting that it might serve as a common valuation system during decision making. In addition, functional connectivity analyses indicated that the value signal in VMPFC might integrate inputs from networks, including the anterior insula and posterior superior temporal cortex, that are thought to be involved in social cognition

    A common neural scale for the subjective pleasantness of different primary rewards.

    Get PDF
    When an economic decision is taken, it is between goals with different values, and the values must be on the same scale. Here, we used functional MRI to search for a brain region that represents the subjective pleasantness of two different rewards on the same neural scale. We found activity in the ventral prefrontal cortex that correlated with the subjective pleasantness of two fundamentally different rewards, taste in the mouth and warmth on the hand. The evidence came from two different investigations, a between-group comparison of two independent fMRI studies, and from a within-subject study. In the latter, we showed that neural activity in the same voxels in the ventral prefrontal cortex correlated with the subjective pleasantness of the different rewards. Moreover, the slope and intercept for the regression lines describing the relationship between activations and subjective pleasantness were highly similar for the different rewards. We also provide evidence that the activations did not simply represent multisensory integration or the salience of the rewards. The findings demonstrate the existence of a specific region in the human brain where neural activity scales with the subjective pleasantness of qualitatively different primary rewards. This suggests a principle of brain processing of importance in reward valuation and decision-making

    Kinetic energy extraction of a tidal stream turbine and its sensitivity to structural stiffness attenuation

    Get PDF
    © 2015 The Authors. The hydrodynamic forces imparted on a tidal turbine rotor, whilst causing it to rotate and hence generate power, will also cause the blades to deform. This deformation will affect the turbine's performance if not included in the early design phase and could lead to a decrease in power output and a reduction in operational life. Conversely, designing blades to allow them to deform slightly may reduce localised stress and therefore prolong the life of the blades and allow the blades to deform in to their optimum operational state. The aim of this paper is to better understand the kinetic energy extraction by varying the material modulus of a turbine blade. Shaft torque/power, blade tip displacement, and axial thrust results are presented for 2, 3 and 4 bladed rotor configurations at peak power extraction. For the rotor design studied the FSI model data show that there is a low sensitivity to blade deformation for the 2, 3 and 4 bladed rotors. However, the results reveal that the 3 bladed rotor displayed maximum hydrodynamic performance as a rigid structure which then decreased as the blade deformed. The 2 and 4 bladed rotor configurations elucidated a slight increase in hydrodynamic performance with deflection

    Positron Emission Tomography Score Has Greater Prognostic Significance Than Pretreatment Risk Stratification in Early-Stage Hodgkin Lymphoma in the UK RAPID Study.

    Get PDF
    PURPOSE: Accurate stratification of patients is an important goal in Hodgkin lymphoma (HL), but the role of pretreatment clinical risk stratification in the context of positron emission tomography (PET) -adapted treatment is unclear. We performed a subsidiary analysis of the RAPID trial to assess the prognostic value of pretreatment risk factors and PET score in determining outcomes. PATIENTS AND METHODS: Patients with stage IA to IIA HL and no mediastinal bulk underwent PET assessment after three cycles of doxorubicin, bleomycin, vinblastine, and dacarbazine; 143 PET-positive patients (PET score, 3 to 5) received a fourth doxorubicin, bleomycin, vinblastine, and dacarbazine cycle and involved-field radiotherapy, and 419 patients in complete metabolic remission were randomly assigned to receive involved-field radiotherapy (n = 208) or no additional treatment (n = 211). Cox regression was used to investigate the association between PET score and pretreatment risk factors with HL-specific event-free survival (EFS). RESULTS: High PET score was associated with inferior EFS, before (P .4). CONCLUSION: In RAPID, a positive PET scan did not carry uniform prognostic weight; only a PET score of 5 was associated with inferior outcomes. This suggests that in future trials involving patients without B symptoms or mediastinal bulk, a score of 5 rather than a positive PET result should be used to guide treatment escalation in early-stage HL

    The effect of tidal flow directionality on tidal turbine performance characteristics

    Get PDF
    With many Tidal Energy Conversion (TEC) devices at full scale prototype stage there are two distinct design groups for Horizontal Axis Tidal Turbines (HATTs). Devices with a yaw mechanism allowing the turbine to always face into the flow, and devices with blades that can rotate through 180° to harness a strongly bi-directional flow. As marine turbine technology verges on the realm of economic viability this paper reveals the performance of Cardiff University's concept tidal turbine with its support structure either upstream or downstream and with various proximities between the rotating plane of the turbine and its support stanchion. Through the use of validated Computational Fluid Dynamics (CFD) modelling this work shows the optimal proximity between rotor plane and stanchion as well as establishing, in the given context, the use of a yaw mechanism to be superior to a bi-directional system from a performance perspective
    corecore