1,188 research outputs found

    The eta-photon transition form factor

    Get PDF
    The eta-photon transition form factor is evaluated in a formalism based on a phenomenological description at low values of the photon virtuality, and a QCD-based description at high photon virtualities, matching at a scale Q02Q_{0}^{2}. The high photon virtuality description makes use of a Distribution Amplitude calculated in the Nambu-Jona-Lasinio model with Pauli-Villars regularization at the matching scale Q02Q_{0}^{2}, and QCD evolution from Q02Q_{0}^{2} to higher values of Q2Q^{2}. A good description of the available data is obtained. The analysis indicates that the recent data from the BaBar collaboration on pion and eta transition form factor can be well reproduced, if a small contribution of twist three at the matching scale Q02Q_{0}^{2} is included.Comment: 14 pages, 3 figures, revised version, minor corrections, references added, conclusions unchanged. Accepted for publication in Phys. Rev.

    Support of generalized parton distributions in Bethe-Salpeter models of hadrons

    Get PDF
    The proper support of generalized parton distributions from relativistic constituent quark models with pointlike constituents is studied. The correct support is guaranteed when the vertex function does not depend on the relative minus-momentum. We show that including quark interactions in models with pointlike constituent quarks might lead to a support problem. A computation of the magnitude of the support problem in the Bonn relativistic constituent quark model is presented.Comment: 8 pages, 4 figures. v2: specific calculation included, references and figure added. Submitted to Phys. Lett.

    Acute promyelocytic Leukemia: Update on the mechanisms of leukemogenesis, resistance and on innovative treatment strategies

    Get PDF
    This review highlights new findings that have deepened our understanding of the mechanisms of leukemogenesis, therapy and resistance in acute promyelocytic leukemia (APL). Promyelocytic leukemia-retinoic acid receptor alpha (PML-RARa) sets the cellular landscape of acute promyelocytic leukemia (APL) by repressing the transcription of RARa target genes and disrupting PML-NBs. The RAR receptors control the homeostasis of tissue growth, modeling and regeneration, and PML-NBs are involved in self-renewal of normal and cancer stem cells, DNA damage response, senescence and stress response. The additional somatic mutations in APL mainly involve FLT3, WT1, NRAS, KRAS, ARID1B and ARID1A genes. The treatment outcomes in patients with newly diagnosed APL improved dramatically since the advent of all-trans retinoic acid (ATRA) and arsenic trioxide (ATO). ATRA activates the transcription of blocked genes and degrades PML-RAR alpha, while ATO degrades PML-RARa by promoting apoptosis and has a pro-oxidant effect. The resistance to ATRA and ATO may derive from the mutations in the RARa ligand binding domain (LBD) and in the PML-B2 domain of PML-RARa, but such mutations cannot explain the majority of resistances experienced in the clinic, globally accounting for 5-10% of cases. Several studies are ongoing to unravel clonal evolution and resistance, suggesting the therapeutic potential of new retinoid molecules and combinatorial treatments of ATRA or ATO with different drugs acting through alternative mechanisms of action, which may lead to synergistic effects on growth control or the induction of apoptosis in APL cells

    Structure-property relationships in metal-organic frameworks for hydrogen storage

    Get PDF
    Experimental hydrogen isotherms on several metal-organic frameworks (IRMOF-1, IRMOF-3, IRMOF-9, ZIF-7, ZIF-8, ZIF-9, ZIF-11, ZIF-12, ZIF-CoNIm, MIL-101 (Cr), NH2-MIL-101 (Cr), NH2-MIL-101 (Al), UiO-66, UiO-67 and HKUST-1) synthesized in-house and measured at 77 K and pressures up to 18 MPa are presented, along with N2 adsorption characterization. The experimental isotherms together with literature high pressure hydrogen data were analyzed in order to search for relationships between structural properties of the materials and their hydrogen uptakes. The total hydrogen capacity of the materials was calculated from the excess adsorption assuming a constant density for the adsorbed hydrogen. The surface area, pore volumes and pore sizes of the materials were related to their maximum hydrogen excess and total hydrogen capacities. Results also show that ZIF-7 and ZIF-9 (SOD topology) have unusual hydrogen isotherm shapes at relatively low pressures, which is indicative of "breathing", a phase transition in which the pore space increases due to adsorption. This work presents novel correlations using the modelled total hydrogen capacities of several MOFs. These capacities are more practically relevant for energy storage applications than the measured excess hydrogen capacities. Thus, these structural correlations will be advantageous for the prediction of the properties a MOF will need in order to meet the US Department of Energy targets for the mass and volume capacities of on-board storage systems. Such design tools will allow hydrogen to be used as an energy vector for sustainable mobile applications such as transport, or for providing supplementary power to the grid in times of high demand.</p

    Morningness and sleep quality improve adherence to Mediterranean Diet

    Full text link
    Podeu consultar el III Workshop anual INSA-UB complet a: http://hdl.handle.net/2445/118993Sessió 2. Comunicació oral núm.

    Emotional eating is associated to sleep quality in Spanish young adults

    Get PDF
    Podeu consultar el III Workshop anual INSA-UB complet a: http://hdl.handle.net/2445/118993Sessió 1. Pòster núm. 1

    No-core shell model for 48-Ca, 48-Sc and 48-Ti

    Full text link
    We report the first no-core shell model results for 48Ca^{48}Ca, 48Sc^{48}Sc and 48Ti^{48}Ti with derived and modified two-body Hamiltonians. We use an oscillator basis with a limited Ω\hbar\Omega range around 45/A1/325/A2/3=10.5MeV45/A^{1/3}-25/A^{2/3} = 10.5 MeV and a limited model space up to 1Ω1\hbar\Omega. No single-particle energies are used. We find that the charge dependence of the bulk binding energy of eight A=48 nuclei is reasonably described with an effective Hamiltonian derived from the CD-Bonn interaction while there is an overall underbinding by about 0.4 MeV/nucleon. However, the resulting spectra exhibit deficiencies that are anticipated due to: (1) basis space limitations and/or the absence of effective many-body interactions; and, (2) the absence of genuine three-nucleon interactions. We then introduce additive isospin-dependent central terms plus a tensor force to our Hamiltonian and achieve accurate binding energies and reasonable spectra for all three nuclei. The resulting no-core shell model opens a path for applications to the double-beta (ββ\beta\beta) decay process.Comment: Revised content and added reference

    Structure-property relationships in metal-organic frameworks for hydrogen storage

    Get PDF
    Experimental hydrogen isotherms on several metal-organic frameworks (IRMOF-1, IRMOF-3, IRMOF-9, ZIF-7, ZIF-8, ZIF-9, ZIF-11, ZIF-12, ZIF-CoNIm, MIL-101 (Cr), NH2-MIL-101 (Cr), NH2-MIL-101 (Al), UiO-66, UiO-67 and HKUST-1) synthesized in-house and measured at 77 K and pressures up to 18 MPa are presented, along with N2 adsorption characterization. The experimental isotherms together with literature high pressure hydrogen data were analysed in order to search for relationships between structural properties of the materials and their hydrogen uptakes. The total hydrogen capacity of the materials was calculated from the excess adsorption assuming a constant density for the adsorbed hydrogen. The surface area, pore volumes and pore sizes of the materials were related to their maximum hydrogen excess and total hydrogen capacities. Results also show that ZIF-7 and ZIF-9 (SOD topology) have unusual hydrogen isotherm shapes at relatively low pressures, which is indicative of “breathing”, a phase transition in which the pore space increases due to adsorption. This work presents novel and more useful correlations using the modelled total hydrogen capacities of several MOFs. These total hydrogen capacities are more practically relevant for energy storage applications than the measured excess hydrogen capacities. Thus, these structural correlations will be advantageous for the prediction of the properties a MOF will need in order to meet the US Department of Energy targets for the mass and volume of on-board storage systems. Such design tools will allow hydrogen to be used as an energy vector for sustainable mobile applications such as transport, or for providing supplementary power to the grid in times of high demand

    The Anti-Leukemia Effect of Ascorbic Acid: From the Pro-Oxidant Potential to the Epigenetic Role in Acute Myeloid Leukemia

    Get PDF
    Data derived from high-throughput sequencing technologies have allowed a deeper understanding of the molecular landscape of Acute Myeloid Leukemia (AML), paving the way for the development of novel therapeutic options, with a higher efficacy and a lower toxicity than conventional chemotherapy. In the antileukemia drug development scenario, ascorbic acid, a natural compound also known as Vitamin C, has emerged for its potential anti-proliferative and pro-apoptotic activities on leukemic cells. However, the role of ascorbic acid (vitamin C) in the treatment of AML has been debated for decades. Mechanistic insight into its role in many biological processes and, especially, in epigenetic regulation has provided the rationale for the use of this agent as a novel anti-leukemia therapy in AML. Acting as a co-factor for 2-oxoglutarate-dependent dioxygenases (2-OGDDs), ascorbic acid is involved in the epigenetic regulations through the control of TET (ten-eleven translocation) enzymes, epigenetic master regulators with a critical role in aberrant hematopoiesis and leukemogenesis. In line with this discovery, great interest has been emerging for the clinical testing of this drug targeting leukemia epigenome. Besides its role in epigenetics, ascorbic acid is also a pivotal regulator of many physiological processes in human, particularly in the antioxidant cellular response, being able to scavenge reactive oxygen species (ROS) to prevent DNA damage and other effects involved in cancer transformation. Thus, for this wide spectrum of biological activities, ascorbic acid possesses some pharmacologic properties attractive for anti-leukemia therapy. The present review outlines the evidence and mechanism of ascorbic acid in leukemogenesis and its therapeutic potential in AML. With the growing evidence derived from the literature on situations in which the use of ascorbate may be beneficial in vitro and in vivo, we will finally discuss how these insights could be included into the rational design of future clinical trials
    corecore