51 research outputs found

    Dependence of phase transitions on halide ratio in inorganic CsPb BrxI1 x 3 perovskite thin films obtained from high throughput experimentation

    Get PDF
    In this communication, we present the phase diagram of CsPb BrxI1 amp; 8722;x 3 0 amp; 8804; x amp; 8804; 1, 300 585 K obtained by high throughput in situ GIWAXS measurements of a combinatorial thin film library. We find that all compositions convert to the cubic perovskite phase at high temperature and that the presence of bromide in the films stabilizes the metastable perovskite phases upon cool down. In accordance with recent predictions from DFT calculations, the transition temperatures monotonically decrease with increasing bromide conten

    Combinatorial inkjet printing for compositional tuning of metal halide perovskite thin films

    Get PDF
    To accelerate the materials discovery and development process for a sustainable technology advancement it is imperative to explore and develop combined high throughput material synthesis and analysis workflows. In this work, we investigate a method of combinatorial inkjet printing to tune the composition of the inorganic cesium lead mixed halide perovskite solid solution, CsPb BrxI1 amp; 8722;x 3. The compositional variation is achieved by simultaneous printing of different precursor inks with multiple printheads and controlled by varying the number of droplets printed by each printhead throughout the sample. The droplet placement is optimised through an algorithm that allows maximum mixing of the combined inks. The local compositional homogeneity of thin film samples was investigated as a function of the printing resolution by micrometer resolution X ray fluorescence and synchrotron based grazing incidence wide angle X ray scattering. We show that a combinatorial library of ten compositions between CsPbI3 and CsPbBr2I, printed using the developed algorithm, is locally homogeneous for the optimised printing parameters. An implementation of the algorithm in the high level programming language Python is provided for easy use in other system

    Transient massive hyperlipidaemia in a type 2 diabetic subject

    Get PDF
    A 50-year-old man, in apparently good health, was referred to the Lipid Center of San Luigi Gonzaga Hospital, Orbassano (Turin, Italy), by his primary care physician (PCP) because clinical tests at the time of blood donation showed milky plasma with serious hypertriglyceridaemia (>5000 mg/dl) and hyperglycaemia (381 mg/dl), diagnostic for diabetes. It was not possible to perform further blood chemical analyses because hypertriglyceridaemia would have provided abnormal results. The patient entered the hospital to prevent acute pancreatitis, which is often associated with severe hypertriglyceridaemi

    Treatment options for severe hypertriglyceridemia (SHTG): the role of apheresis

    Get PDF
    Hypertriglyceridemia is associated with a number of severe diseases such as acute pancreatitis and coronary artery disease. In severe hypertriglyceridemia (SHTG, triglycerides > 1,000 mg/dL), rapid lowering of plasma triglycerides (TG) has to be achieved. Treatment regimes include nutritional intervention, the use of antihyperlipidemic drugs, and therapeutic apheresis. Apheretic treatment is indicated in medical emergencies such as hypertriglyceridemic pancreatitis

    An open-access database and analysis tool for perovskite solar cells based on the FAIR data principles

    Get PDF
    Large datasets are now ubiquitous as technology enables higher-throughput experiments, but rarely can a research field truly benefit from the research data generated due to inconsistent formatting, undocumented storage or improper dissemination. Here we extract all the meaningful device data from peer-reviewed papers on metal-halide perovskite solar cells published so far and make them available in a database. We collect data from over 42,400 photovoltaic devices with up to 100 parameters per device. We then develop open-source and accessible procedures to analyse the data, providing examples of insights that can be gleaned from the analysis of a large dataset. The database, graphics and analysis tools are made available to the community and will continue to evolve as an open-source initiative. This approach of extensively capturing the progress of an entire field, including sorting, interactive exploration and graphical representation of the data, will be applicable to many fields in materials science, engineering and biosciences

    An open-access database and analysis tool for perovskite solar cells based on the FAIR data principles

    Get PDF
    Large datasets are now ubiquitous as technology enables higher-throughput experiments, but rarely can a research field truly benefit from the research data generated due to inconsistent formatting, undocumented storage or improper dissemination. Here we extract all the meaningful device data from peer-reviewed papers on metal-halide perovskite solar cells published so far and make them available in a database. We collect data from over 42, 400 photovoltaic devices with up to 100 parameters per device. We then develop open-source and accessible procedures to analyse the data, providing examples of insights that can be gleaned from the analysis of a large dataset. The database, graphics and analysis tools are made available to the community and will continue to evolve as an open-source initiative. This approach of extensively capturing the progress of an entire field, including sorting, interactive exploration and graphical representation of the data, will be applicable to many fields in materials science, engineering and biosciences. © 2021, The Author(s)

    An open-access database and analysis tool for perovskite solar cells based on the FAIR data principles

    Get PDF
    AbstractLarge datasets are now ubiquitous as technology enables higher-throughput experiments, but rarely can a research field truly benefit from the research data generated due to inconsistent formatting, undocumented storage or improper dissemination. Here we extract all the meaningful device data from peer-reviewed papers on metal-halide perovskite solar cells published so far and make them available in a database. We collect data from over 42,400 photovoltaic devices with up to 100 parameters per device. We then develop open-source and accessible procedures to analyse the data, providing examples of insights that can be gleaned from the analysis of a large dataset. The database, graphics and analysis tools are made available to the community and will continue to evolve as an open-source initiative. This approach of extensively capturing the progress of an entire field, including sorting, interactive exploration and graphical representation of the data, will be applicable to many fields in materials science, engineering and biosciences.</jats:p
    • …
    corecore