181 research outputs found

    The Geometry of the Catalytic Active Site in [FeFe]-hydrogenases is Determined by Hydrogen Bonding and Proton Transfer

    Get PDF
    [FeFe]-hydrogenases are efficient metalloenzymes that catalyze the oxidation and evolution of molecular hydrogen, H2. They serve as a blueprint for the design of synthetic H2-forming catalysts. [FeFe]-hydrogenases harbor a six-iron cofactor that comprises a [4Fe-4S] cluster and a unique diiron site with cyanide, carbonyl, and hydride ligands. To address the ligand dynamics in catalytic turnover and upon carbon monoxide (CO) inhibition, we replaced the native aminodithiolate group of the diiron site by synthetic dithiolates, inserted into wild-type and amino acid variants of the [FeFe]-hydrogenase HYDA1 from Chlamydomonas reinhardtii. The reactivity with H2 and CO was characterized using in situ and transient infrared spectroscopy, protein crystallography, quantum chemical calculations, and kinetic simulations. All cofactor variants adopted characteristic populations of reduced species in the presence of H2 and showed significant changes in CO inhibition and reactivation kinetics. Differences were attributed to varying interactions between polar ligands and the dithiolate head group and/or the environment of the cofactor (i.e., amino acid residues and water molecules). The presented results show how catalytically relevant intermediates are stabilized by inner-sphere hydrogen bonding suggesting that the role of the aminodithiolate group must not be restricted to proton transfer. These concepts may inspire the design of improved enzymes and biomimetic H2-forming catalysts

    Spectroscopical Investigations on the Redox Chemistry of [FeFe]-Hydrogenases in the Presence of Carbon Monoxide

    Get PDF
    [FeFe]-hydrogenases efficiently catalyzes hydrogen conversion at a unique [4Fe–4S]-[FeFe] cofactor, the so-called H-cluster. The catalytic reaction occurs at the diiron site, while the [4Fe–4S] cluster functions as a redox shuttle. In the oxidized resting state (Hox), the iron ions of the diiron site bind one cyanide (CN−) and carbon monoxide (CO) ligand each and a third carbonyl can be found in the Fe–Fe bridging position (µCO). In the presence of exogenous CO, A fourth CO ligand binds at the diiron site to form the oxidized, CO-inhibited H-cluster (Hox-CO). We investigated the reduced, CO-inhibited H-cluster (Hred´-CO) in this work. The stretching vibrations of the diatomic ligands were monitored by attenuated total reflection Fourier-transform infrared spectroscopy (ATR FTIR). Density functional theory (DFT) at the TPSSh/TZVP level was employed to analyze the cofactor geometry, as well as the redox and protonation state of the H-cluster. Selective 13CO isotope editing, spectro-electrochemistry, and correlation analysis of IR data identified a one-electron reduced, protonated [4Fe–4S] cluster and an apical CN− ligand at the diiron site in Hred´-CO. The reduced, CO-inhibited H-cluster forms independently of the sequence of CO binding and cofactor reduction, which implies that the ligand rearrangement at the diiron site upon CO inhibition is independent of the redox and protonation state of the [4Fe–4S] cluster. The relation of coordination dynamics to cofactor redox and protonation changes in hydrogen conversion catalysis and inhibition is discussed

    Bridging hydride at reduced H-cluster species in [FeFe]-hydrogenases revealed by infrared spectroscopy, isotope editing, and quantum chemistry

    Get PDF
    [FeFe]-Hydrogenases contain a H2-converting cofactor (H-cluster) in which a canonical [4Fe–4S] cluster is linked to a unique diiron site with three carbon monoxide (CO) and two cyanide (CN–) ligands (e.g., in the oxidized state, Hox). There has been much debate whether reduction and hydrogen binding may result in alternative rotamer structures of the diiron site in a single (Hred) or double (Hsred) reduced H-cluster species. We employed infrared spectro-electrochemistry and site-selective isotope editing to monitor the CO/CN– stretching vibrations in [FeFe]-hydrogenase HYDA1 from Chlamydomonas reinhardtii. Density functional theory calculations yielded vibrational modes of the diatomic ligands for conceivable H-cluster structures. Correlation analysis of experimental and computational IR spectra has facilitated an assignment of Hred and Hsred to structures with a bridging hydride at the diiron site. Pronounced ligand rotation during μH binding seems to exclude Hred and Hsred as catalytic intermediates. Only states with a conservative H-cluster geometry featuring a μCO ligand are likely involved in rapid H2 turnover

    Spectroscopic Properties of a Biologically Relevant [Fe2(μ-O)2] Diamond Core Motif with a Short Iron-Iron Distance

    Get PDF
    Diiron cofactors in enzymes perform diverse challenging transformations. The structures of high valent intermediates (Q in methane monooxygenase and X in ribonucleotide reductase) are debated since Fe−Fe distances of 2.5–3.4 Å were attributed to “open” or “closed” cores with bridging or terminal oxido groups. We report the crystallographic and spectroscopic characterization of a FeIII2(μ-O)2 complex (2) with tetrahedral (4C) centres and short Fe−Fe distance (2.52 Å), persisting in organic solutions. 2 shows a large Fe K-pre-edge intensity, which is caused by the pronounced asymmetry at the TD FeIII centres due to the short Fe−μ−O bonds. A ≈2.5 Å Fe−Fe distance is unlikely for six-coordinate sites in Q or X, but for a Fe2(μ-O)2 core containing four-coordinate (or by possible extension five-coordinate) iron centres there may be enough flexibility to accommodate a particularly short Fe−Fe separation with intense pre-edge transition. This finding may broaden the scope of models considered for the structure of high-valent diiron intermediates formed upon O2 activation in biology

    Comparative Spectroscopic Study Revealing Why the CO2 Electroreduction Selectivity Switches from CO to HCOO– at Cu–Sn- and Cu–In-Based Catalysts

    Get PDF
    To address the challenge of selectivity toward single products in Cu-catalyzed electrochemical CO2 reduction, one strategy is to incorporate a second metal with the goal of tuning catalytic activity via synergy effects. In particular, catalysts based on Cu modified with post-transition metals (Sn or In) are known to reduce CO2 selectively to either CO or HCOO– depending on their composition. However, it remains unclear exactly which factors induce this switch in reaction pathways and whether these two related bimetal combinations follow similar general structure–activity trends. To investigate these questions systematically, Cu–In and Cu–Sn bimetallic catalysts were synthesized across a range of composition ratios and studied in detail. Compositional and morphological control was achieved via a simple electrochemical synthesis approach. A combination of operando and quasi-in situ spectroscopic techniques, including X-ray photoelectron, X-ray absorption, and Raman spectroscopy, was used to observe the dynamic behaviors of the catalysts’ surface structure, composition, speciation, and local environment during CO2 electrolysis. The two systems exhibited similar selectivity dependency on their surface composition. Cu-rich catalysts produce mainly CO, while Cu-poor catalysts were found to mainly produce HCOO–. Despite these similarities, the speciation of Sn and In at the surface differed from each other and was found to be strongly dependent on the applied potential and the catalyst composition. For Cu-rich compositions optimized for CO production (Cu85In15 and Cu85Sn15), indium was present predominantly in the reduced metallic form (In0), whereas tin mainly existed as an oxidized species (Sn2/4+). Meanwhile, for the HCOO–-selective compositions (Cu25In75 and Cu40Sn60), the indium exclusively exhibited In0 regardless of the applied potential, while the tin was reduced to metallic (Sn0) only at the most negative applied potential, which corresponds to the best HCOO– selectivity. Furthermore, while Cu40Sn60 enhances HCOO– selectivity by inhibiting H2 evolution, Cu25In75 improves the HCOO– selectivity at the expense of CO production. Due to these differences, we contend that identical mechanisms cannot be used to explain the behavior of these two bimetallic systems (Cu–In and Cu–Sn). Operando surface-enhanced Raman spectroscopy measurements provide direct evidence of the local alkalization and its impact on the dynamic transformation of oxidized Cu surface species (Cu2O/CuO) into a mixture of Cu(OH)2 and basic Cu carbonates [Cux(OH)y(CO3)y] rather than metallic Cu under CO2 electrolysis. This study provides unique insights into the origin of the switch in selectivity between CO and HCOO– pathways at Cu bimetallic catalysts and the nature of surface-active sites and key intermediates for both pathways

    Hydrogen and oxygen trapping at the H-cluster of [FeFe]-hydrogenase revealed by site-selective spectroscopy and QM/MM calculations

    Get PDF
    [FeFe]-hydrogenases are superior hydrogen conversion catalysts. They bind a cofactor (H-cluster) comprising a four-iron and a diiron unit with three carbon monoxide (CO) and two cyanide (CN−) ligands. Hydrogen (H2) and oxygen (O2) binding at the H-cluster was studied in the C169A variant of [FeFe]-hydrogenase HYDA1, in comparison to the active oxidized (Hox) and CO- inhibited (Hox-CO) species in wildtype enzyme. 57Fe labeling of the diiron site was achieved by in vitro maturation with a synthetic cofactor analogue. Site-selective X-ray absorption, emission, and nuclear inelastic/forward scattering methods and infrared spectroscopy were combined with quantum chemical calculations to determine the molecular and electronic structure and vibrational dynamics of detected cofactor species. Hox reveals an apical vacancy at Fed in a [4Fe4S-2Fe]3 − complex with the net spin on Fed whereas Hox-CO shows an apical CN− at Fed in a [4Fe4S-2Fe(CO)]3 − complex with net spin sharing among Fep and Fed (proximal or distal iron ions in [2Fe]). At ambient O2 pressure, a novel H-cluster species (Hox-O2) accumulated in C169A, assigned to a [4Fe4S-2Fe(O2)]3 − complex with an apical superoxide (O2−) carrying the net spin bound at Fed. H2 exposure populated the two-electron reduced Hhyd species in C169A, assigned as a [(H)4Fe4S-2Fe(H)]3 − complex with the net spin on the reduced cubane, an apical hydride at Fed, and a proton at a cysteine ligand. Hox-O2 and Hhyd are stabilized by impaired O2– protonation or proton release after H2 cleavage due to interruption of the proton path towards and out of the active site

    Evidence of Sulfur Non-Innocence in [CoII(dithiacyclam)]2+-Mediated Catalytic Oxygen Reduction Reactions

    Get PDF
    In many metalloenzymes, sulfur-containing ligands participate in catalytic processes, mainly via the involvement in electron transfer reactions. In a biomimetic approach, we now demonstrate the implication of S-ligation in cobalt mediated oxygen reduction reactions (ORR). A comparative study between the catalytic ORR capabilities of the four-nitrogen bound [Co(cyclam)]2+ (1; cyclam=1,5,8,11-tetraaza-cyclotetradecane) and the S-containing analog [Co(S2N2-cyclam)]2+ (2; S2N2-cyclam=1,8-dithia-5,11-diaza-cyclotetradecane) reveals improved catalytic performance once the chalcogen is introduced in the Co coordination sphere. Trapping and characterization of the intermediates formed upon dioxygen activation at the CoII centers in 1 and 2 point to the involvement of sulfur in the O2 reduction process as the key for the improved catalytic ORR capabilities of 2

    Protonation/reduction dynamics at the [4Fe–4S] cluster of the hydrogen-forming cofactor in [FeFe]-hydrogenases

    Get PDF
    The [FeFe]-hydrogenases of bacteria and algae are the most efficient hydrogen conversion catalysts in nature. Their active-site cofactor (H-cluster) comprises a [4Fe–4S] cluster linked to a unique diiron site that binds three carbon monoxide (CO) and two cyanide (CN−) ligands. Understanding microbial hydrogen conversion requires elucidation of the interplay of proton and electron transfer events at the H-cluster. We performed real-time spectroscopy on [FeFe]-hydrogenase protein films under controlled variation of atmospheric gas composition, sample pH, and reductant concentration. Attenuated total reflection Fourier-transform infrared spectroscopy was used to monitor shifts of the CO/CN− vibrational bands in response to redox and protonation changes. Three different [FeFe]-hydrogenases and several protein and cofactor variants were compared, including element and isotopic exchange studies. A protonated equivalent (HoxH) of the oxidized state (Hox) was found, which preferentially accumulated at acidic pH and under reducing conditions. We show that the one- electron reduced state Hred′ represents an intrinsically protonated species. Interestingly, the formation of HoxH and Hred′ was independent of the established proton pathway to the diiron site. Quantum chemical calculations of the respective CO/CN− infrared band patterns favored a cysteine ligand of the [4Fe–4S] cluster as the protonation site in HoxH and Hred′. We propose that proton-coupled electron transfer facilitates reduction of the [4Fe–4S] cluster and prevents premature formation of a hydride at the catalytic diiron site. Our findings imply that protonation events both at the [4Fe–4S] cluster and at the diiron site of the H-cluster are important in the hydrogen conversion reaction of [FeFe]-hydrogenases

    Comparative Spectroscopic Study Revealing Why the CO2 Electroreduction Selectivity Switches from CO to HCOO– at Cu–Sn- and Cu–In-Based Catalysts

    Get PDF
    To address the challenge of selectivity toward single products in Cu- catalyzed electrochemical CO2 reduction, one strategy is to incorporate a second metal with the goal of tuning catalytic activity via synergy effects. In particular, catalysts based on Cu modified with post-transition metals (Sn or In) are known to reduce CO2 selectively to either CO or HCOO− depending on their composition. However, it remains unclear exactly which factors induce this switch in reaction pathways and whether these two related bimetal combinations follow similar general structure−activity trends. To investigate these questions systematically, Cu−In and Cu−Sn bimetallic catalysts were synthesized across a range of composition ratios and studied in detail. Compositional and morphological control was achieved via a simple electrochemical synthesis approach. A combination of operando and quasi-in situ spectroscopic techniques, including X-ray photoelectron, X-ray absorption, and Raman spectroscopy, was used to observe the dynamic behaviors of the catalysts’ surface structure, composition, speciation, and local environment during CO2 electrolysis. The two systems exhibited similar selectivity dependency on their surface composition. Cu-rich catalysts produce mainly CO, while Cu-poor catalysts were found to mainly produce HCOO−. Despite these similarities, the speciation of Sn and In at the surface differed from each other and was found to be strongly dependent on the applied potential and the catalyst composition. For Cu-rich compositions optimized for CO production (Cu85In15 and Cu85Sn15), indium was present predominantly in the reduced metallic form (In0), whereas tin mainly existed as an oxidized species (Sn2/4+). Meanwhile, for the HCOO−-selective compositions (Cu25In75 and Cu40Sn60), the indium exclusively exhibited In0 regardless of the applied potential, while the tin was reduced to metallic (Sn0) only at the most negative applied potential, which corresponds to the best HCOO− selectivity. Furthermore, while Cu40Sn60 enhances HCOO− selectivity by inhibiting H2 evolution, Cu25In75 improves the HCOO− selectivity at the expense of CO production. Due to these differences, we contend that identical mechanisms cannot be used to explain the behavior of these two bimetallic systems (Cu−In and Cu−Sn). Operando surface-enhanced Raman spectroscopy measurements provide direct evidence of the local alkalization and its impact on the dynamic transformation of oxidized Cu surface species (Cu2O/CuO) into a mixture of Cu(OH)2 and basic Cu carbonates [Cux(OH)y(CO3)y] rather than metallic Cu under CO2 electrolysis. This study provides unique insights into the origin of the switch in selectivity between CO and HCOO− pathways at Cu bimetallic catalysts and the nature of surface-active sites and key intermediates for both pathways. KEYWORDS: CO2 electroreduction, Cu nanostructures, in situ spectroscopy, bimetallic catalysts, electrodepositio

    The Chemical and Evolutionary Ecology of Tetrodotoxin (TTX) Toxicity in Terrestrial Vertebrates

    Get PDF
    Tetrodotoxin (TTX) is widely distributed in marine taxa, however in terrestrial taxa it is limited to a single class of vertebrates (Amphibia). Tetrodotoxin present in the skin and eggs of TTX-bearing amphibians primarily serves as an antipredator defense and these taxa have provided excellent models for the study of the evolution and chemical ecology of TTX toxicity. The origin of TTX present in terrestrial vertebrates is controversial. In marine organisms the accepted hypothesis is that the TTX present in metazoans results from either dietary uptake of bacterially produced TTX or symbiosis with TTX producing bacteria, but this hypothesis may not be applicable to TTX-bearing amphibians. Here I review the taxonomic distribution and evolutionary ecology of TTX in amphibians with some attention to the origin of TTX present in these taxa
    corecore