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2

ABSTRACT

[FeFe]-hydrogenases are efficient metalloenzymes that catalyze the oxidation and evolution of 

molecular hydrogen, H2. They serve as a blueprint for the design of synthetic H2-forming 

catalysts. [FeFe]-hydrogenases harbor a six-iron cofactor that comprises a [4Fe-4S] cluster and 

a unique diiron site with cyanide, carbonyl, and hydride ligands. To address the ligand dynamics 

in catalytic turnover and upon carbon monoxide (CO) inhibition, we replaced the native 

aminodithiolate group of the diiron site by synthetic dithiolates, inserted into wild-type and 

amino acid variants of the [FeFe]-hydrogenase HYDA1 from Chlamydomonas reinhardtii. The 

reactivity with H2 and CO was characterized using in situ and transient infrared spectroscopy, 

protein crystallography, quantum chemical calculations, and kinetic simulations. All cofactor 

variants adopted characteristic populations of reduced species in the presence of H2 and showed 

significant changes in CO inhibition and reactivation kinetics. Differences were attributed to 

varying interactions between polar ligands and the dithiolate head group and/or the environment 

of the cofactor (i.e., amino acid residues and water molecules). The presented results show how 

catalytically relevant intermediates are stabilized by inner-sphere hydrogen bonding suggesting 

that the role of the aminodithiolate group must not be restricted to proton transfer. These 

concepts may inspire the design of improved enzymes and biomimetic H2-forming catalysts. 

Keywords: metalloenzymes, cofactor dynamics, infrared spectroscopy, protein 

crystallography, quantum chemistry
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INTRODUCTION

Hydrogenases are metalloenzymes that catalyze the reversible reduction of protons to molecular 

hydrogen (H2).1 They have been found in all domains of life participating in cellular energy 

metabolism and hydrogen sensing. Three different classes were identified: [FeFe]-

hydrogenases catalyze both proton reduction and H2 oxidation, e.g. in bacteria and algae, while 

[NiFe]- and [Fe]-hydrogenases are predominantly H2-oxidizing enzymes in bacteria and 

archaea. Hydrogenase activity is reversibly inhibited by carbon monoxide (CO) usually 

impaired by molecular oxygen (O2).2�5 Here, the reactivity of [FeFe]-hydrogenases with CO 

and/or H2 was employed to unravel molecular interactions involved in structural dynamics and 

catalytic performance at the active site.

The active site cofactor of [FeFe]-hydrogenases (H-cluster) comprises a unique diiron site 

covalently linked to a [4Fe-4S] cluster via a single cysteine (Fig. 1).6�8 The proximal and distal 

iron ions of the diiron site (Fep, Fed) carry a single CO and cyanide (CN�) ligand each and share 

a bridging carbonyl (µCO) in the oxidized resting state, Hox.5,9 An open apical coordination 

site at Fed characterizes the so-called �rotated geometry� of the H-cluster.10 A chain of water 

molecules connects protein surface and [4Fe-4S] cluster while conserved amino acids and a 

small water cluster have been shown to form a dedicated proton transfer trajectory to the diiron 

site.11 The protein-cofactor interface is formed by an adjacent cysteine residue and the unique 

aminodithiolate group (ADT) of the H-cluster (Fig. 1).12 Any variation of the cysteine or 

nitrogen head group severely diminishes H2 turnover, which revealed the essential role of the 

ADT group as a proton transfer relay.13�15
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states Hox-CO and Hred´-CO suggests an additional, equatorial CO ligand and an apical 

cyanide ligand (aCN�) at Fed
19 although earlier crystal structures were modeled with an apical 

carbonyl (aCO).20,21 Based on isotope editing studies we proposed aCO ligation at the reduced 

diiron site of Hred and Hsred together with a bridging hydride (µH�).22 Other authors favor an 

open coordination site at Fed and a µCO or �semi-bridging� carbonyl ligand in these states.23�

26 In the two-electron reduced catalytic intermediate Hhyd, an apical hydride species at Fed 

was verified.27�29 The remarkable flexibility of the diiron site is broadly accepted; however, the 

molecular proceedings of hydrogen turnover are under debate.30 How variations in H-cluster 

geometry are related to hydrogen bonding changes and proton transfer is in the focus of the 

present investigation.

Table 1. Electronic and structural features of H-cluster species.

redox
species

[4Fe-4S]
cluster

diiron
site�

bridging

species�
apical

species#
alternative
annotation

reference

Hox +2 I / II CO none none 5,9

Hox-CO +2 I / II CO CN� none 19

Hred´ +1 I / II CO none Hred 16�18

Hred´-CO +1 I / II CO CN� Hred-CO 13

Hhyd +1 II / II CO H� none 27�29

Hred +2 II / II H� CO HredH+ 22

Hsred +1 II / II H� CO HsredH+ 22

� Formal redox levels are given for Fep / Fed.
� Alternative bridging and apical ligands were proposed for Hred and Hsred.24�26

# The crystal structures of CO-inhibited CPI was modeled with an apical CO ligand.20

In vitro maturation of [FeFe]-hydrogenases generated H-cluster variants that contain artificial 

dithiolate ligands (Fig. 1) affecting the geometry of the Fed site, the reactivity with small 

molecules, and the hydrogen bonding network at the active site.31�33 Such cofactor variants 

show characteristic infrared signatures, accumulate different H-cluster states in the presence of 
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6

H2, and exhibit distinct CO sensitivities.13�15 These observations prompted us to investigate the 

underlying substrate affinities and cofactor geometries. Nine variants of the [FeFe]-

hydrogenase from Chlamydomonas reinhardtii (HYDA1) were compared, including different 

dithiolate head groups as well as replacements of an adjacent cysteine (C169 in HYDA1) by 

side-directed mutagenesis. We employed qualitative and quantitative infrared spectroscopy to 

analyze the reactions with H2 and/or CO as well as X-ray crystallography, quantum chemical 

calculations, and kinetic simulations to characterize the structure and function of the variants. 

Inhibition with CO proved to be a valuable tool for probing the active site properties 

independent of catalytic activity and functional proton transfer. The drastic variations observed 

in the stabilization of Hhyd and Hox-CO are attributed to proton transfer and hydrogen-

bonding interactions in the inner and outer coordination sphere34 of the H-cluster. Such effects 

were found to determine the geometry of the active site cofactor under catalytic and inhibitory 

conditions.

RESULTS AND DISCUSSION

[FeFe]-hydrogenase apo-protein from C. reinhardtii (HYDA1) was heterologously expressed 

and synthesized in E. coli. After purification, protein was activated with synthetic diiron 

complexes as described previously.32 The resulting enzymes were analyzed by in situ attenuated 

total reflection Fourier-transform infrared spectroscopy (ATR FTIR) with regard to reactions 

with H2 and CO. The study included native enzyme (ADT) as well as cofactor variants ODT, 

EDT, and SDT as well as PDT and PDS (Table 2). Furthermore, we addressed protein/ cofactor 

interactions by comparison of native enzyme with amino acid variant C169A and its cofactor 

�double� variants ODT and EDT (Table 2). Solving the crystal structure of the EDT variant of 

[FeFe]-hydrogenase CPI from Clostridium pasteurianum verified the lack of a central atom in 
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the dithiolate bridgehead as well as the absence of a putative water molecule in the respective 

position. (PDB entry 6H63, Fig. S1).

Table 2. Cofactor and amino acid variants analyzed in this study. 

annotation
full

name�
head
group

position 
169�

additional 
references

ADT amino-dt NH -CH2-SH 8,12

ODT oxo-dt O -CH2-SH 8,14

EDT ethane-dt none -CH2-SH 18

SDT sulfur-dt S -CH2-SH 8,14

PDT propane-dt CH2 -CH2-SH 8,13

PDS propane-ds CH2 -CH2-SH 33

ADT-C169A amino-dt NH -CH3 none

ODT-C169A oxo-dt O -CH3 none

EDT-C169A ethane-dt none -CH3 none

� �dt� and �ds� refers to dithiolate and diselenide, respectively

� HYDA1 numbering (equivalent 299 in CPI)

Spectral Characterization. The HYDA1 cofactor variants in as-isolated form adopted varying 

mixtures of oxidized, reduced, and CO-inhibited H-cluster species as visible in the FTIR 

spectra. A unique identification of the vibrational bands of the CO and CN� ligands in the 

oxidized states (Hox, Hox-CO) and oxidized-protonated states (HoxH, HoxH-CO), as well as 

in the corresponding one-electron reduced states (Hred´, Hred´-CO) was accomplished (Fig. 

S2, Tables S1 and S2). This is of key importance since Hox, HoxH, and Hred´ give rise to 

similar IR signatures and produce different CO-inhibited species.17�19 We note that a consistent 

set of IR spectra of these states for all cofactor variants was so far not available. 

Despite catalytic activities typically < 1% relative to native HYDA1,13,14 near-quantitative 

enrichment of Hox was achieved at pH T 8 upon prolonged exposure to N2 gas (auto-oxidation, 
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8

see Fig. S3). In comparison to ADT, the IR bands of Hox for HYDA1 EDT, SDT, and PDT 

variants showed only small CO/CN� band frequency up-shifts while ODT exhibited slightly 

larger up-shifts and bands of PDS are shifted to lower frequencies (Fig. 2A and Fig. S4). 

Quantum chemical calculations at QM/MM and DFT levels accurately reproduced the CO/CN� 

stretching frequencies of Hox for all variants (Fig. S5). These results provide strong evidence 

that the overall electronic configuration of the oxidized H-cluster is similar in all variants. The 

frequency shifts are explained by small variations in electron density distribution, i.e. due to 

increased electronegativity of the ODT and SDT head groups14 or an overall increase of electron 

density in the PDS variant.33
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Figure 2. Infrared spectra of HYDA1 cofactor variants. (A) Normalized spectra of Hox in 

the presence of N2 (pH 8). (B) Normalized spectra of Hox-CO in the presence of CO (pH 8). 

See Tables S1 and S2 for CN� band frequencies. 
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9

Exposure of oxidized HYDA1 to CO gas stabilized the CO-inhibited state (Fig. 2B). While the 

overall IR signature of Hox-CO was conserved in all cofactor variants, ODT and EDT showed 

pronounced up-shifts, in particular of the highest-frequency CO band (25 cm-1 or 12 cm-1, 

respectively). It is important to note that this band results from a coupled vibrational mode 

involving all CO ligands and must not be assigned to exogenous CO.19 The mean differences 

in CN� stretching frequencies for Hox-CO ODT and EDT are the same as in Hox (Fig. S4). 

Quantum chemistry was employed to evaluate conceivable diiron site geometries for Hox-CO 

(Fig. S5 and S6). Best agreement between experimental and calculated IR frequencies was 

found for a structure with an apical CN� ligand compared to a geometry with an apical CO 

ligand at Fed, as reported earlier.19 The IR signatures indicate a comparable electronic 

configuration of the Hox-CO cofactor in all variants, in accordance with the data for Hox. 

However, the calculations did not fully reproduce the CO frequency up-shifts as observed for 

ODT and EDT. This suggests an influence on the electronic configuration of the H-cluster 

beyond inner coordination sphere effects that could not be included in the calculations. We 

assume that altered interactions between the H-cluster and its protein environment35�37 may 

cause the diverging IR signatures of Hox-CO in cofactor variants ODT and EDT, which remain 

unspecified in the absence of respective crystal structures. In the next step, we explored the 

influence of the dithiolate group on CO inhibition in kinetic experiments. 

Inhibition and Reactivation Kinetics with CO. In situ ATR FTIR spectroscopy facilitated a 

quantitative comparison of CO inhibition and reactivation kinetics for all HYDA1 cofactor 

variants (Fig. 3). Already at 1% CO partial pressure, ADT, ODT, EDT, and PDS rapidly and 

completely converted from Hox V Hox-CO, which indicates similar and high CO binding 

affinities. In contrast, SDT and PDT adopted only approximately 65% or 20% Hox-CO after 
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10

250 s under 1% CO (t1 in Fig. 3) and converted to Hox-CO at 100% CO partial pressure only 

incompletely (~90% or ~70%, respectively). This behavior implied diminished CO binding 

affinities. Notably, the CO sensitivity of the selenium-substituted PDS variant was similar to 

ADT, which suggests that changes in charge density distribution and/or conformational 

flexibility contributes to the apparent CO affinity.15 Under the chosen conditions, the kinetics 

of CO inhibition and reactivation were found to be reproducible with an experimental variance 

not exceeding 5% (Fig. S7, Tab. S4). To investigate CO binding free from macroscopic effects 

(i.e. gas diffusion) we exploited transient IR spectroscopy in a flash-photolysis approach similar 

to what was reported by Mirmohades and coworkers.38,39 Following CO photolysis induced by 

a 450 nm laser pulse, equally rapid CO re-binding (t1/2 = 1.3 ± 0.2 ms) was observed for ADT, 

ODT, and EDT (Fig. S8). Accordingly, the microscopic velocity of CO binding is independent 

of the dithiolate head group.
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Figure 3. CO inhibition and reactivation kinetics. Relative population of Hox-CO (%) as a 

function of time and CO concentration in the gas phase (0 � 100%). t1: [Hox-CO] after 250 s 

at 1% CO in 99% N2. t2: [Hox-CO] at 500 s after removal of CO from the gas stream. ADT, 

ODT, EDT, and PDS exhibit very similar inhibition kinetics (t1/2 < 10 s for 1% CO and full 
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11

inhibition after ~60 s). The low CO affinity of SDT and PDT is mirrored in the fast reactivation 

kinetics; ADT and ODT showed very slow reactivation, accordingly. Despite being easily 

inhibited by CO, EDT and PDS exhibited relatively fast reactivation.

The varying degrees of CO inhibition were mostly mirrored by the Hox-CO V Hox 

reactivation kinetics in the absence of CO gas (t > 1500 s in Fig. 3). While rapid and almost 

complete Hox-CO decay was observed for SDT and PDT, a slower and incomplete reactivation 

within the experimental data acquisition period was observed for EDT and PDS. ADT and ODT 

showed similar but very slow and least complete Hox-CO decay. The altered CO inhibition 

and reactivation kinetics in some of the dithiolate variants suggests that the macroscopic CO 

affinity is defined by variations of the relative CO binding and release rates and an altered 

ligand rearrangement, possibly. As a prerequisite for CO binding, earlier studies from our 

groups19 have suggested an alternative to the crystalized Hox geometry, which is characterized 

by a partial rotation of the equatorial CN� ligand at Fed. In this structure, the distance between 

CN� and ADT-NH is diminished by ~1.3 Å reflecting a weak inner-sphere hydrogen bond in 

�Hoxb� that may compensate for the proposed outer-sphere hydrogen bond to a lysine residue 

in the crystallographic conformation of �Hoxa� (Fig. 4A).35 A similar structural equilibrium of 

Hox has been discussed in the context of O2 induced deactivation by Fourmond and co-

workers.40 To gain further insight into the observed inhibition and reactivation profiles, we 

employed numerical simulations including a two-step reaction model with a reversible 

geometry change (conformational isomers �Hoxa� and �Hoxb�), followed by CO binding to 

�Hoxb� and formation of Hox-CO (Eq. S3, Fig. S9). Variation of the relative rate constants 

qualitatively reproduced the experimentally observed Hox-CO equilibrium populations and 

rate constants of the dithiolate variants (Fig. 4B).
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12

Figure 4. Conceivable isomers of Hox and simulation of relative Hox-CO populations. (A) 

Out of two structural isomers of the active-ready oxidized state, �Hoxa� represents the 

crystallized geometry while �Hoxb� is characterized by a partly rotated, distal CN� ligand. (B) 

Plotting data from Fig. 3 for [Hox-CO] at t1 (inhibition) against [Hox-CO] at t2 (reactivation) 

illustrates that ADT and ODT have a high CO affinity whereas PDT is relatively CO insensitive. 

Cofactor variants occupying the upper left of the graph show mixed characteristics. A two-step 

reaction model with a reversible geometry change followed by CO binding reasonably 

reproduces the observed behavior (dashed line, see Fig. S9 and the legend for computational 

details and underlying rate constants that yielded the theoretical Hox-CO concentration values).

We suggest that oscillations of the Hox geometry determine the apparent Hox-CO population 

and assign the effects of dithiolate exchange to a gradual de-stabilization of a Hox isomer with 

slight ligand rearrangements at Fed (�Hoxb�). This view is supported by the relative energies of 

the two Hox conformers as derived from DFT calculations, which suggest considerable 

stabilization of the crystallographic conformation (Hoxa) in Hox, but stabilization of the 
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13

conformation with an apical CN� (aCN�) at Fed in Hox-CO, as well as destabilization of the 

aCN� conformation of Hox-CO in the non-ADT cofactor variants (see caption of Fig. S9 for 

details). While simulating absolute rates of CO inhibition and reactivation is not possible at this 

stage, we aimed at a qualitative description of the kinetic differences between cofactor variants. 

More complex kinetic models are certainly conceivable, but cannot be uniquely designed at 

present due to the lack of information on protein-cofactor interactions and other kinetic 

processes. The observed differences in CO inhibition and reactivation are hardly compatible 

with an apical CO ligand. Weakening of Hox-CO thus is attributed to the lack of hydrogen 

bonding between the dithiolate head group and an apical CN� ligand. However, the reactivation 

kinetics indicate a higher degree of complexity. This possibly includes electrostatic attraction 

(ODT, SDT)14, steric repulsion between the apical ligand and the dithiolate head group (PDT)15, 

as well as differences in electron density distribution across the diiron site (PDS).33 A notable 

spectroscopic feature is the lack of larger changes in the CN� frequencies among the CO-

inhibited cofactor variants (Fig. S2 and Table S2). Previously, the deletion of a putative 

hydrogen bond donor to Fep-CN� shifted the corresponding IR bands by ~20 cm-1 to lower 

frequencies.36 Whether outer-sphere hydrogen bonding (i.e. to adjacent amino acid residues or 

water molecules) may compensate for inner-sphere hydrogen bonding in cofactor variants ODT 

and EDT was probed in the next step.

Outer-sphere stabilization of Hox-CO. Cysteine 169 functions as a proton relay between the 

H-cluster and water cluster W1. It represents a likely hydrogen-bond donor in the vicinity of 

the H-cluster. To probe the influence of C169 on CO affinity, we produced site-directed 

mutagenesis variants with a cysteine/ alanine exchange. HYDA1-C169A was reconstituted with 

ADT, ODT, or EDT cofactors and analyzed by in situ ATR FTIR spectroscopy (Fig. 5 and Fig. 

S10). In comparison to wild-type enzyme, the spectra of Hox exhibited a mean CO/CN� down-

shift of only ~3 cm-1 whereas the Hox-CO signature of the HYDA1-C169A cofactor variants 
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indicated much stronger shifts to lower frequencies. For example, the coupled CO modes \ and 

] shift by 8 � 12 cm-1 and 24 � 28 cm-1, respectively. Band ^ that comprises significant 

contributions from the proximal CO ligand did not change significantly. The difference spectra 

for ADT, ODT, and EDT in Figure 5 show that the Hox-CO signature of HYDA1-C169A is 

not the same; however, the dithiolate-specific IR band up-shifts observed in CO-inhibited wild-

type enzyme (Fig. 2B) were found to be largely remedied. The Hox-CO spectrum of HYDA1-

C169A ADT was hardly affected by the amino acid exchange.
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o
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�28 �8

� �� ADT

ODT

EDT

Figure 5. ATR FTIR difference spectra of the Hox < Hox-CO conversion. Spectra of the 

C169A variant of HYDA1 are shown as colored lines, grey spectra depict wild-type enzyme. 

The frequencies of the CO vibrational modes of Hox-CO (positive bands \� ^� and ]D are 

sensitive to the H-clusters� geometry. Negative bands are assigned to Hox. Significant 

downshifts are indicated in cm-1 (IR bands \ and ]� predominantly). Only limited differences in 

Hox-CO were observed between native HYDA1 and HYDA1-C169 (ADT).

We recently solved the crystal structure of CPI-C299A in oxidized form (equivalent to 

HYDA1-C169A).11 Here, the cysteine is replaced by a water molecule, W* (Fig. S11). 

Although CPI-C299A was not crystalized in CO-inhibited form, no variation of internal water 

was observed upon CO inhibition of native enzyme20,21 suggesting conserved localization of 

W* in both Hox and Hox-CO. This water species may act as a hydrogen bond donor to the 
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apical CN� ligand of Hox-CO when inner-sphere hydrogen bonding is impeded (i.e., in ODT 

and EDT). The similar IR signatures of the CO-inhibited C169A variants (Fig. 5) suggest an 

unconstrained ligand orientation reflecting the structural flexibility of the water molecule acting 

as a hydrogen bond donor. Furthermore, hydrogen bonding to W* (instead of C169) may 

explain the lack of significant differences in the CN� regime �rescuing� the native Hox-CO 

signature. We conclude that the hydrogen-bonding network between polar, apical ligands at the 

H-cluster and the adjacent cysteine sidechain or neighboring water species is an important 

determinant of the diiron site geometry in the non-ADT variants. 

Hydrogen Oxidation Kinetics. To investigate the geometry of the H-cluster in reduced form, 

we explored the reaction with H2 of different HYDA1 cofactor variants by in situ ATR FTIR 

spectroscopy (Fig. 6). In the presence of H2, native ADT enzyme revealed a complex mixture 

of Hred´ and Hred/Hsred at pH 8 (top left) while near-quantitative Hhyd formation was 

observed at pH 4 (top right).29 Independent of the pH, cofactor variants PDT and PDS formed 

no other redox species than Hred´ whereas SDT enzyme did not react with H2 at all (Fig. 

S12).14,15 ODT and EDT revealed a large population of Hred´ and Hhyd already at pH 8.28 The 

EDT-modified enzyme showed an immediate Hox < Hred´ conversion followed by 

progressive enrichment of Hhyd over Hred´ (bottom left). These processes occur 

simultaneously in HYDA1-ODT (bottom right). For subsequent replacement of H2 with N2, 

native enzyme exhibited the slowest Hhyd decrease, HYDA1-EDT the fastest decrease, and 

cofactor variant ODT adopted medium-speed decay kinetics (Fig. S13). Notably, Hred and 

Hsred were exclusively observed in HYDA1-ADT, which illustrates the need for efficient 

proton transfer in the reduction of the diiron site. 
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Figure 6. H2 oxidation kinetics. Changes of H-cluster populations in HYDA1 enzyme in the 

presence of 0%, 1%, or 10% H2 in the N2 carrier gas. Top left: In native enzyme, exposure to 

H2 caused an immediate accumulation of reduced cofactor states Hred/ Hsred and Hred´ at 

the expense of Hox (pH 8). When H2 was removed from the gas phase, a short-lived increase 

of Hred and Hred´ at the expense of Hsred was observed. Top right: At pH 4, native enzyme 

predominantly formed Hhyd and traces of Hred out of HoxH. Bottom left: Cofactor variant 

ODT was found to accumulate Hred´ and Hhyd slowly and simultaneously. Even at pH 8, the 

oxidized sample comprised ~25 % HoxH. Bottom right: Cofactor variant EDT reacts much 

faster with H2 than ODT, first converting from Hox to Hred´ and thereafter from Hred´ to 

Hhyd (pH 8). Both ODT and EDT show no traces of Hred/ Hsred. The persistence of Hhyd 

in the absence of H2 decreases in the following order: ADT > ODT > EDT. 
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The H-cluster binds an apical hydride ligand (aH�) at the distal iron ion in Hhyd.27�29 It seems 

reasonable to assume hydrogen bonding between aH� and ADT-NH stabilizing the charged 

apical ligand, similar to the situation in Hox-CO (see above). However, to understand the 

formation and stabilization of Hhyd in cofactor variants ODT and EDT, both thermodynamic 

and kinetic considerations must be taken into account. High proton concentrations11,29 or partly 

impaired proton transfer activity27,28 to the diiron site have been exploited to accumulate Hhyd 

in functional enzyme. Hydride formation in ODT and EDT is facilitated by outer-sphere 

stabilization between aH� and the protein environment, most likely compensating for the lack 

of an inner-sphere hydrogen bond donor (i.e., ADT-NH). In contrast to HYDA1-C169A, the 

double variants HYDA1-C169A ODT and EDT were found to be completely unreactive with 

H2 (Fig. S12). Revisiting CO inhibition is informative here. The double variants were easily 

inhibited by CO, explained by the presence of an additional water molecule in HYDA1-C169A, 

W* (Fig. 5). Although a similar arrangement should be able to stabilize the hydride state, 

heterolytic cleavage of H2 was not observed. This illustrates the role of proton transfer in the 

accumulation of reduced species like Hhyd and allows concluding that the geometry of the H-

cluster is determined by both hydrogen bonding and proton transfer.

Direct evidence for a similar mechanism of Hhyd and Hox-CO stabilization was derived from 

concerted H2 and CO treatments on HYDA1 (Fig. 7).  The top left panel shows the concomitant 

decrease of Hred/Hsred and Hred´ at 1% or 10% CO in H2 carrier gas in native enzyme (pH 

8). Different to inhibition under oxidizing conditions, CO inhibition in the presence of H2 

yielded a combination of Hred´-CO and Hox-CO, indicating an incomplete oxidation. 

Compared to Fig. 3A, native enzyme reacts significantly slower with CO and recovers from 

inhibition about four times faster under H2 (Fig. S14). This reflects the higher affinity of CO 

compared to H2 of the ADT H-cluster.41 Furthermore, a small yet significant fraction of 

Hred/Hsred remains to be stable with 1% CO whereas Hred´ is lost completely under these 
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diminished to ~20% under CO. Bottom left: In cofactor variant ODT an increase of Hred´-CO 

over Hred´ was observed upon CO exposure (pH 8), but virtually no decrease of Hhyd. Bottom 

right: In comparison, slow changes in Hhyd in the presence of CO indicate that Hhyd in EDT 

was less stable than in ODT. 

Distinct protection against CO was observed when the H-cluster was locked in the hydride state, 

i.e. at pH 4 (Fig. 7, top right panel). In the presence of 10% CO, approximately >20 % Hhyd 

prevailed. This effect was found to be even more pronounced in the cofactor variants, even at 

alkaline pH values. For example, HYDA1-ODT showed conversion of Hred´ to Hred´-CO but 

virtually no decrease of Hhyd (bottom left) whereas a very slow conversion of Hhyd into CO-

inhibited species was notable in HYDA1-EDT (bottom right). The higher stability of the 

hydride state in cofactor variant ODT vs. EDT agrees well with decrease kinetics of Hhyd (Fig. 

S13) and Hox-CO (Fig. 3) as discussed above. Our systematic evaluation of the reactivity of 

HYDA1 cofactor variants with CO and H2 emphasizes that inner coordination sphere 

interactions are a major determinant for stabilization of apical ligands in both Hox-CO and 

Hhyd. 

CONCLUSIONS

Our experimental and computational analysis of the [FeFe]-hydrogenase from C. reinhardtii 

consistently implies that the CO/CN� ligand dynamics of the H-cluster are governed by proton 

transfer and hydrogen-bonding interactions at the inner coordination sphere (Fig. 8). We 

propose an intrinsically flexible diiron site geometry19,40 that facilitates stabilization of polar 

ligands at the distal iron ion in both catalytic intermediates (Hhyd) and inhibited species (Hox-

CO). Comparing H2 oxidation and CO inhibition allows dissecting the influence of proton 

transfer and hydrogen bonding on the geometry of the H-cluster. 
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proton transfer at the protein-cofactor interface of [FeFe]-hydrogenases. The derived concepts 

for tuning of proton transfer efficiency and stabilization of catalytic cofactor intermediates in 

[FeFe]-hydrogenases may inspire synthetic H2-forming catalysts for the production of H2 as a 

fuel.42�44

Inner-sphere hydrogen bonding may also play a role in O2 sensitivity as a putative intermediate 

of O2-induced H-cluster degradation, Hox-O2, has been shown to carry an apical superoxide 

ligand.45 From an evolutionary perspective, it appears that the excellent catalytic performance 

of [FeFe]-hydrogenases has evolved at the expense of CO and O2 sensitivity. For [FeFe]-

hydrogenases of photosynthetic organisms like C. reinhardtii,46 this may have been an 

advantage as CO liberated due to transient exposure of the enzymes to O2 or high light 

intensities may protect catalytically competent enzymes from deactivation.47�49 

MATERIAL AND METHODS

Artificial maturation and protein crystallography. [FeFe]-hydrogenase apo-protein from C. 

reinhardtii  (HYDA1) and C. pasteurianum (CPI) was expressed in in Escherichia coli 

(BL21(DE3)-�iscR) and purified as previously described; cofactor synthesis and in vitro 

maturation of protein was performed following established protocols.32,33 Diffraction data on 

protein crystals of the semisynthetic CPI hydrogenase EDT were collected at 100 K at beamline 

ESRF-BM30A (Grenoble, France) and processed as reported earlier.8 The crystal structure was 

deposited in the Protein Data Bank under accession code 6H63. Crystallographic data is 

summarized in Table S3. See Supporting Information for further experimental details.

ATR FTIR spectroscopy and data evaluation. Infrared spectra were recorded on protein 

films using FTIR spectroscopy in attenuated total reflection configuration on a Bruker Tensor27 

spectrometer.18 H-cluster states were populated in the presence of defined compositions of N2, 

Page 21 of 29

ACS Paragon Plus Environment

ACS Catalysis

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



22

CO, or H2 in a humidified, pH-controlled gas stream (�aerosol�). To monitor the H-cluster state 

conversions in time, IR spectra were collected in real time with a temporal resolution of 1 - 5 s. 

Data evaluation involved normalization of spectra followed by a global fit approach in the 

CO/CN� regime to determine cofactor state populations.18 See Supporting Information for 

further details.

Transient IR spectroscopy. Samples of HYDA1 ADT, ODT, and EDT variants were mixed 

(3 µL of ~1 mM protein), dehydrated under CO gas on a BaF2 window, rehydrated via vapor 

diffusion, and sealed with a second BaF2 window. Photolysis of the exogenous CO ligand was 

induced by a 10 ns flash (~ 90 mJ/cm2, 450 nm) from an optical parametric oscillator pumped 

by the third harmonic of a Nd:YAG laser (Quanta-Ray). IR transients (2000 � 2045 cm-1, 1 cm-1 

steps, 100 repetitions at 1 Hz each) were recorded on a homebuilt continuous-wave quantum-

cascade laser (QCL) spectrometer.39 See Supporting Information for further details.

Computational procedures. Density functional theory and quantum mechanics/ molecular 

mechanics calculations (BP86 or TPSSh functionals and TZVP basis-set, broken-symmetry 

approach for geometry-optimization and antiferromagnetic couplings calculation, ONIOM 

method and universal force field in QM/MM) on model structures (Fig. S16) were carried out 

using Gaussian09 as reported in ref. 50. Vibrational frequencies were derived from normal 

mode analysis of relaxed structures. Numerical kinetic simulations were performed with the 

CAIN ordinary differential equation solver (available at http://cain.sourceforge.net). See 

Supporting Information (computational procedures and references therein, Figs. S5, S6, S8, and 

S15) for further details.
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SUPPORTING INFORMATION

Supporting experimental procedures; Supporting computational procedures; Comparison of 

ADT and EDT; Comparison of Hox/HoxH and Hox-CO/HoxH-CO; Auto-oxidation in the 

absence of H2; Experimental CO band frequency differences; Calculation of vibrational 

frequencies; Reproducibility and variance; Transient IR spectroscopy; Kinetic simulations; 

Absolute spectra for HYDA1-C169A; Comparison of native CPI and CPI-C299A; Spectra of 

all cofactor variants in the presence of H2; Stability of Hhyd in the absence of H2; 

Reactivation from CO-inhibition in ADT and ODT; Durability of Hsred in the presence of H2 

and CO; Computational structures; IR-frequencies for H-cluster species with a Hox-like 

diiron site geometry (table); IR-frequencies for CO-inhibited H-cluster species (table); Data 

collection and refinement statistics of crystal structure CPI-EDT (table); Fitting parameters 

(table); XYZ coordinates (table).
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