2,886 research outputs found

    Processing of Alumina Nano-films

    Get PDF
    There are different technologies for processing of alumina thin films. It has been found that only some of them are usable for reliable and reproducible processing of nano-films with the thickness of 2 through 3 nm. Such the films are used for fabrication of tunneling junctions with high sensitivity to humidity, which can be used for fabrication of humidity sensors. The alumina films are mostly prepared on evaporated or sputtered aluminum electrode by oxidization. Quality of tunneling junctions with alumina tunneling barrier fabricated of air-oxidized, oxygen-oxidized and oxygen plasma-oxidized Al electrodes has been examined by the measurement of resistances and capacitances of the junctions. Sensitivity of the junctions to external humidity has been examined, too. It has been found that the best technology for fabrication of alumina nano-films is plasmatic oxidation of aluminum evaporated thin films. It has been also found that the alumina nano-thin films are very sensitive to humidity

    Cosmological gravitomagnetism and Mach's principle

    Full text link
    The spin axes of gyroscopes experimentally define local non-rotating frames. But what physical cause governs the time-evolution of gyroscope axes? We consider linear perturbations of Friedmann-Robertson-Walker cosmologies with k=0. We ask: Will cosmological vorticity perturbations exactly drag the spin axes of gyroscopes relative to the directions of geodesics to quasars in the asymptotic unperturbed FRW space? Using Cartan's formalism with local orthonormal bases we cast the laws of linear cosmological gravitomagnetism into a form showing the close correspondence with the laws of ordinary magnetism. Our results, valid for any equation of state for cosmological matter, are: 1) The dragging of a gyroscope axis by rotational perturbations of matter beyond the Hubble-dot radius from the gyroscope is exponentially suppressed, where dot is the derivative with respect to cosmic time. 2) If the perturbation of matter is a homogeneous rotation inside some radius around a gyroscope, then exact dragging of the gyroscope axis by the rotational perturbation is reached exponentially fast as the rotation radius grows beyond the H-dot radius. 3) For the most general linear cosmological perturbations the time-evolution of all gyroscope spin axes exactly follow a weighted average of the energy currents of cosmological matter. The weight function is the same as in Ampere's law except that the inverse square law is replaced by the Yukawa force with the Hubble-dot cutoff. Our results demonstrate (in first order perturbation theory for FRW cosmologies with k = 0) the validity of Mach's hypothesis that axes of local non-rotating frames precisely follow an average of the motion of cosmic matter.Comment: 18 pages, 1 figure. Comments and references adde

    Internationalisation des élites académiques suisses au 20ème siècle : convergences et contrastes

    Get PDF
    A partir d'une base de données originale sur les professeurs de droit et de sciences économiques des universités suisses sur l'ensemble du XXe siècle, cet article rend compte des diverses dynamiques d'internationalisation de ces élites. Trois enseignements majeurs peuvent être tirés de nos analyses. D'abord, d'un point de vue diachronique, il est possible de diviser le XXe siècle en trois phases historiques : une internationalité forte des élites académiques au début du siècle, une nationalisation ou « relocalisation » suite à la Première Guerre mondiale, puis une « ré-internationalisation » à partir des années 1960 et de manière accélérée depuis les années 1980. Ensuite, les professeurs de sciences économiques, en terme de nationalités ou de lieu de formation, sont plus cosmopolites et ont moins d'ancrage local que leurs homologues juristes. Enfin, la prédominance germanique parmi les professeurs des universités suisses au début du siècle, qui s'explique autant par une internationalité d'« excellence » que de « proximité », laisse place, surtout en sciences économiques, à une montée de l'influence des Etats-Unis, révélatrice d'un effritement de l'internationalité de « proximité »

    Mach's principle: Exact frame-dragging via gravitomagnetism in perturbed Friedmann-Robertson-Walker universes with K=(±1,0)K = (\pm 1, 0)

    Full text link
    We show that the dragging of the axis directions of local inertial frames by a weighted average of the energy currents in the universe is exact for all linear perturbations of any Friedmann-Robertson-Walker (FRW) universe with K = (+1, -1, 0) and of Einstein's static closed universe. This includes FRW universes which are arbitrarily close to the Milne Universe, which is empty, and to the de Sitter universe. Hence the postulate formulated by E. Mach about the physical cause for the time-evolution of the axis directions of inertial frames is shown to hold in cosmological General Relativity for linear perturbations. The time-evolution of axis directions of local inertial frames (relative to given local fiducial axes) is given experimentally by the precession angular velocity of gyroscopes, which in turn is given by the operational definition of the gravitomagnetic field. The gravitomagnetic field is caused by cosmological energy currents via the momentum constraint. This equation for cosmological gravitomagnetism is analogous to Ampere's law, but it holds also for time-dependent situtations. In the solution for an open universe the 1/r^2-force of Ampere is replaced by a Yukawa force which is of identical form for FRW backgrounds with K=(1,0).K = (-1, 0). The scale of the exponential cutoff is the H-dot radius, where H is the Hubble rate, and dot is the derivative with respect to cosmic time. Analogous results hold for energy currents in a closed FRW universe, K = +1, and in Einstein's closed static universe.Comment: 23 pages, no figures. Final published version. Additional material in Secs. I.A, I.J, III, V.H. Additional reference

    Nuclear structure of Ac-231

    Get PDF
    The low-energy structure of 231Ac has been investigated by means of gamma ray spectroscopy following the beta-decay of 231Ra. Multipolarities of 28 transitions have been established by measuring conversion electrons with a mini-orange electron spectrometer. The decay scheme of 231Ra --> 231Ac has been constructed for the first time. The Advanced Time Delayed beta-gamma-gamma(t) method has been used to measure the half-lives of five levels. The moderately fast B(E1) transition rates derived suggest that the octupole effects, albeit weak, are still present in this exotic nucleus

    A Quasi-Spherical Gravitational Wave Solution in Kaluza-Klein Theory

    Get PDF
    An exact solution of the source-free Kaluza-Klein field equations is presented. It is a 5D generalization of the Robinson-Trautman quasi-spherical gravitational wave with a cosmological constant. The properties of the 5D solution are briefly described.Comment: 10 pages Latex, Revtex, submitted to GR

    Realistic shell-model calculations for proton particle-neutron hole nuclei around 132Sn

    Get PDF
    We have performed shell-model calculations for nuclei with proton particles and neutron holes around 132Sn using a realistic effective interaction derived from the CD-Bonn nucleon-nucleon potential. For the proton-neutron channel this is explicitly done in the particle-hole formalism. The calculated results are compared with the available experimental data, particular attention being focused on the proton particle-neutron hole multiplets. A very good agreement is obtained for all the four nuclei considered, 132Sb, 130Sb, 133Te and 131Sb. We predict many low-energy states which have no experimental counterpart. This may stimulate, and be helpful to, future experiments.Comment: 8 pages, 6 figures, to be published on Physical Review

    Doubly Special Relativity with a minimum speed and the Uncertainty Principle

    Full text link
    The present work aims to search for an implementation of a new symmetry in the space-time by introducing the idea of an invariant minimum speed scale (VV). Such a lowest limit VV, being unattainable by the particles, represents a fundamental and preferred reference frame connected to a universal background field (a vacuum energy) that breaks Lorentz symmetry. So there emerges a new principle of symmetry in the space-time at the subatomic level for very low energies close to the background frame (vVv\approx V), providing a fundamental understanding for the uncertainty principle, i.e., the uncertainty relations should emerge from the space-time with an invariant minimum speed.Comment: 10 pages, 8 figures, Correlated paper in: http://www.worldscientific.com/worldscinet/ijmpd?journalTabs=read. arXiv admin note: substantial text overlap with arXiv:physics/0702095, arXiv:0705.4315, arXiv:0709.1727, arXiv:0805.120

    Transformation des élites en Suisse

    Get PDF

    Analysis of the relationship between disease activity and damage in patients with systemic lupus erythematosus—a 5-yr prospective study

    Get PDF
    Objective. To determine whether initial damage, disease duration, age, initial health status, average disease activity over the 5 yr or an average medication score covering the follow-up period would predict an increase in damage in patients with systemic lupus erythematosus (SLE) within the next 5 yr. Methods. A 5-yr prospective longitudinal study of a cohort of 141 consecutive patients with SLE attending a specialist lupus out-patient clinic in London from their first assessment between July 1994 and February 1995. Disease activity was assessed using the BILAG system, initial health status by the Medical Outcome Survey Short Form 20 with an extra question about fatigue (SF-20+) and damage by the SLICC/ACR Damage Index (SDI). Damage was reassessed 5 yr later. Statistical analysis was carried out using multiple logistic regression analysis (logXact). Results. One hundred and thirty-three female and eight male SLE patients (97 Caucasians, 16 Afro-Caribbeans, 22 Asians and 6 others) were included, their age at inclusion was 41.1 ± 12.5 yr and their disease duration 10.2 ± 6.3 yr. The mean measures at inclusion were: total BILAG 5.2 (range 0-17), total SDI 1.2 (0-7) and medication score 1.2 (0-3). Six patients were lost to follow-up because they had moved. Of the remaining 135 patients total damage had increased in 40 patients and 10 patients had died. At the end of the study, at 4.63 ± 0.19 yr, the total SDI had increased to 1.6 ± 1.7. Multiple logistic regression analysis revealed that death and increase in damage were strongly predicted by a high total disease activity over the entire study period (P<0.001) as we had hypothesized. When the total BILAG score was replaced by the average number of A-flares the prediction of accrual of damage during the study period was again highly significant (P = 0.004). Conclusions. In this first prospective study of its type a highly significant impact of total disease activity, as measured over 5 yr using the BILAG system, on the development of total damage was revealed. Moreover, these results provide further proof of the validity of the SDI and support the BILAG concept of the A-flare
    corecore