355 research outputs found
Factors influencing fluffy layer suspended matter (FLSM) properties in the Odra River - Pomeranian Bay - Arkona Deep System (Baltic Sea) as derived by principal components analysis (PCA), and cluster analysis (CA)
Factors conditioning formation and properties of suspended matter resting on the sea floor (Fluffy Layer Suspended Matter - FLSM) in the Odra river mouth - Arkona Deep system (southern Baltic Sea) were investigated. <P style='line-height: 20px;'> Thirty FLSM samples were collected from four sampling stations, during nine cruises, in the period 1996-1998. Twenty six chemical properties of the fluffy material were measured (organic matter-total, humic substances, a variety of fatty acids fractions, P, N, δ13C, δ15N; Li; heavy metals- Co, Cd, Pb, Ni, Zn, Fe, Al, Mn, Cu, Cr). The so obtained data set was subjected to statistical evaluation. <P style='line-height: 20px;'> Comparison of mean values of the measured properties led to conclusion that both seasonal and spatial differences of the fluffy material collected at the stations occured. Application of Principal Component Analysis, and Cluster Analysis, to the data set amended with environmental characteristics (depth, salinity, chlorophyll <i>a</i>, distance from the river mouth), led to quantification of factors conditioning the FLSM formation. The five most important factors were: contribution of the lithogenic component (responsible for 25% of the data set variability), time dependent factors (including primary productivity, mass exchange with fine sediment fraction, atmospheric deposition, contribution of material originating from abrasion-altogether 21%), contribution of fresh autochtonous organic matter (9%), influence of microbial activity (8%), seasonality (8%)
Breakthrough in purification of fossil pollen for dating of sediments by a new large-particle on-chip sorter
Particle sorting is a fundamental method in various fields of medical and biological research. However, existing sorting applications are not capable for high-throughput sorting of large-size (>100 micrometers) particles. Here, we present a novel on-chip sorting method using traveling vortices generated by on-demand microjet flows, which locally exceed laminar flow condition, allowing for high-throughput sorting (5 kilohertz) with a record-wide sorting area of 520 micrometers. Using an activation system based on fluorescence detection, the method successfully sorted 160-micrometer microbeads and purified fossil pollen (maximum dimension around 170 micrometers) from lake sediments. Radiocarbon dates of sorting-derived fossil pollen concentrates proved accurate, demonstrating the method’s ability to enhance building chronologies for paleoenvironmental records from sedimentary archives. The method is capable to cover urgent needs for high-throughput large-particle sorting in genomics, metabolomics, and regenerative medicine and opens up new opportunities for the use of pollen and other microfossils in geochronology, paleoecology, and paleoclimatology
Decreased expression of miR-146a and miR-155 contributes to an abnormal Treg phenotype in patients with rheumatoid arthritis
Objectives: MicroRNAs (miRNAs) have been implicated in the pathogenesis of autoimmune diseases, not least for their critical role in the regulation of regulatory T cell (Treg) function. Deregulated expression of miR-146a and miR-155 has been associated with rheumatoid arthritis (RA). We therefore investigated miR-146a and miR-155 expression in Tregs of patients with RA and their possible impact on Treg function and disease activity.
Methods: Expression of miR-146a and miR-155 was assessed in RA patients and controls. MiRNA expression was correlated with disease activity and expression of target genes. Interference with biological activity of miRNAs was evaluated in functional Treg assays.
Results: Diminished upregulation of miR-146a and miR-155 in response to T cell stimulation was found in Tregs of RA patients. Diminution of miR-146a expression was observed in particular in patients with active disease, and correlated with joint inflammation. In patients with active RA, Tregs demonstrated a pro-inflammatory phenotype characterised by inflammatory cytokine expression. This was due to an augmented expression and activation of signal transducer and activator transcription 1 (STAT1), a direct target of miR-146a.
Conclusions: Our results suggest that in RA miR-146a facilitates a pro-inflammatory phenotype of Tregs via increased STAT1 activation, and contributes thereby to RA pathogenesis
A Model for the Evolution of Nucleotide Polymerase Directionality
Background: In all known living organisms, every enzyme that synthesizes nucleic acid polymers does so by adding nucleotide 59-triphosphates to the 39-hydroxyl group of the growing chain. This results in the well known 5’?3’ directionality of all DNA and RNA Polymerases. The lack of any alternative mechanism, e.g. addition in a 3’?5 ’ direction, may indicate a very early founder effect in the evolution of life, or it may be the result of a selective pressure against such an alternative. Methodology/Principal Findings: In an attempt to determine whether the lack of an alternative polymerase directionality is the result of a founder effect or evolutionary selection, we have constructed a basic model of early polymerase evolution. This model is informed by the essential chemical properties of the nucleotide polymerization reaction. With this model, we are able to simulate the growth of organisms with polymerases that synthesize either 5’?3 ’ or 3’?5 ’ in isolation or in competition with each other. Conclusions/Significance: We have found that a competition between organisms with 5’?3 ’ polymerases and 3’?5’ polymerases only results in a evolutionarily stable strategy under certain conditions. Furthermore, we have found that mutations lead to a much clearer delineation between conditions that lead to a stable coexistence of these populations and conditions which ultimately lead to success for the 5’?3 ’ form. In addition to presenting a plausible explanation for th
Ecological ReGional Ocean Model with vertically resolved sediments (ERGOMÂ SEDÂ 1.0): coupling benthic and pelagic biogeochemistry of the south-western Baltic Sea
Sediments play an important role in organic matter mineralisation
and nutrient recycling, especially in shallow marine systems. Marine
ecosystem models, however, often only include a coarse representation of
processes beneath the sea floor. While these parameterisations may give a
reasonable description of the present ecosystem state, they lack predictive
capacity for possible future changes, which can only be obtained from
mechanistic modelling.
This paper describes an integrated benthic–pelagic ecosystem model developed
for the German Exclusive Economic Zone (EEZ) in the western Baltic Sea. The
model is a hybrid of two existing models: the pelagic part of the marine
ecosystem model ERGOM and an early diagenetic model by Reed et al. (2011).
The latter one was extended to include the carbon cycle, a determination of
precipitation and dissolution reactions which accounts for salinity
differences, an explicit description of the adsorption of clay minerals, and an
alternative pyrite formation pathway. We present a one-dimensional
application of the model to seven sites with different sediment types. The
model was calibrated with observed pore water profiles and validated with
results of sediment composition, bioturbation rates and bentho-pelagic fluxes
gathered by in situ incubations of sediments (benthic chambers). The model
results generally give a reasonable fit to the observations, even if some
deviations are observed, e.g. an overestimation of sulfide concentrations in
the sandy sediments. We therefore consider it a good first step towards a
three-dimensional representation of sedimentary processes in coupled
pelagic–benthic ecosystem models of the Baltic Sea.</p
Decreased expression of miR-146a and miR-155 contributes to an abnormal Treg phenotype in patients with rheumatoid arthritis
Objectives: MicroRNAs (miRNAs) have been implicated in the pathogenesis of autoimmune diseases, not least for their critical role in the regulation of regulatory T cell (Treg) function. Deregulated expression of miR-146a and miR-155 has been associated with rheumatoid arthritis (RA). We therefore investigated miR-146a and miR-155 expression in Tregs of patients with RA and their possible impact on Treg function and disease activity.
Methods: Expression of miR-146a and miR-155 was assessed in RA patients and controls. MiRNA expression was correlated with disease activity and expression of target genes. Interference with biological activity of miRNAs was evaluated in functional Treg assays.
Results: Diminished upregulation of miR-146a and miR-155 in response to T cell stimulation was found in Tregs of RA patients. Diminution of miR-146a expression was observed in particular in patients with active disease, and correlated with joint inflammation. In patients with active RA, Tregs demonstrated a pro-inflammatory phenotype characterised by inflammatory cytokine expression. This was due to an augmented expression and activation of signal transducer and activator transcription 1 (STAT1), a direct target of miR-146a.
Conclusions: Our results suggest that in RA miR-146a facilitates a pro-inflammatory phenotype of Tregs via increased STAT1 activation, and contributes thereby to RA pathogenesis
Increased Frequencies of Th22 Cells as well as Th17 Cells in the Peripheral Blood of Patients with Ankylosing Spondylitis and Rheumatoid Arthritis
<div><h3>Background</h3><p>T-helper (Th) 22 is involved in the pathogenesis of inflammatory diseases. The roles of Th22 cells in the pathophysiological of ankylosing spondylitis (AS) and rheumatoid arthritis (RA) remain unsettled. So we examined the frequencies of Th22 cells, Th17 cells and Th1 cells in peripheral blood (PB) from patients with AS and patients with RA compared with both healthy controls as well as patients with osteoarthritis.</p> <h3>Design and Methods</h3><p>We studied 32 AS patients, 20 RA patients, 10 OA patients and 20 healthy controls. The expression of IL-22, IL-17 and IFN-γ were examined in AS, RA, OA patients and healthy controls by flow cytometry. Plasma IL-22 and IL-17 levels were examined by enzyme-linked immunosorbent assay.</p> <h3>Results</h3><p>Th22 cells, Th17 cells and interleukin-22 were significantly elevated in AS and RA patients compared with OA patients and healthy controls. Moreover, Th22 cells showed positive correlation with Th17 cells as well as interleukin-22 in AS and RA patients. However, positive correlation between IL-22 and Th17 cells was only found in AS patients not in RA patients. In addition, the percentages of both Th22 cells and Th17 cells correlated positively with disease activity only in RA patients not in AS patients.</p> <h3>Conclusions</h3><p>The frequencies of both Th22 cells and Th17 cells were elevated in PB from patients with AS and patients with RA. These findings suggest that Th22 cells and Th17 cells may be implicated in the pathogenesis of AS and RA, and Th22 cells and Th17 cells may be reasonable cellular targets for therapeutic intervention.</p> </div
Developmentally regulated GTP binding protein 1 (DRG1) controls microtubule dynamics
The mitotic spindle, essential for segregating the sister chromatids into the two evolving daughter cells, is composed of highly dynamic cytoskeletal filaments, the microtubules. The dynamics of microtubules are regulated by numerous microtubule associated proteins. We identify here Developmentally regulated GTP binding protein 1 (DRG1) as a microtubule binding protein with diverse microtubule-associated functions. In vitro, DRG1 can diffuse on microtubules, promote their polymerization, drive microtubule formation into bundles, and stabilize microtubules. HeLa cells with reduced DRG1 levels show delayed progression from prophase to anaphase because spindle formation is slowed down. To perform its microtubule-associated functions, DRG1, although being a GTPase, does not require GTP hydrolysis. However, all domains are required as truncated versions show none of the mentioned activities besides microtubule binding
An ancient family of SelB elongation factor-like proteins with a broad but disjunct distribution across archaea
<p>Abstract</p> <p>Background</p> <p>SelB is the dedicated elongation factor for delivery of selenocysteinyl-tRNA to the ribosome. In archaea, only a subset of methanogens utilizes selenocysteine and encodes archaeal SelB (aSelB). A SelB-like (aSelBL) homolog has previously been identified in an archaeon that does not encode selenosysteine, and has been proposed to be a pyrrolysyl-tRNA-specific elongation factor (EF-Pyl). However, elongation factor EF-Tu is capable of binding archaeal Pyl-tRNA in bacteria, suggesting the archaeal ortholog EF1A may also be capable of delivering Pyl-tRNA to the ribosome without the need of a specialized factor.</p> <p>Results</p> <p>We have phylogenetically characterized the aSelB and aSelBL families in archaea. We find the distribution of aSelBL to be wider than both selenocysteine and pyrrolysine usage. The aSelBLs also lack the carboxy terminal domain usually involved in recognition of the selenocysteine insertion sequence in the target mRNA. While most aSelBL-encoding archaea are methanogenic Euryarchaea, we also find aSelBL representatives in Sulfolobales and Thermoproteales of Crenarchaea, and in the recently identified phylum Thaumarchaea, suggesting that aSelBL evolution has involved horizontal gene transfer and/or parallel loss. Severe disruption of the GTPase domain suggests that some family members may employ a hitherto unknown mechanism of nucleotide hydrolysis, or have lost their GTPase ability altogether. However, patterns of sequence conservation indicate that aSelBL is still capable of binding the ribosome and aminoacyl-tRNA.</p> <p>Conclusions</p> <p>Although it is closely related to SelB, aSelBL appears unlikely to either bind selenocysteinyl-tRNA or function as a classical GTP hydrolyzing elongation factor. We propose that following duplication of aSelB, the resultant aSelBL was recruited for binding another aminoacyl-tRNA. In bacteria, aminoacylation with selenocysteine is essential for efficient thermodynamic coupling of SelB binding to tRNA and GTP. Therefore, change in tRNA specificity of aSelBL could have disrupted its GTPase cycle, leading to relaxation of selective pressure on the GTPase domain and explaining its apparent degradation. While the specific role of aSelBL is yet to be experimentally tested, its broad phylogenetic distribution, surpassing that of aSelB, indicates its importance.</p
- …