78 research outputs found

    Segmentation of the Himalayas as revealed by arc-parallel gravity anomalies

    Get PDF
    International audienceLateral variations along the Himalayan arc are suggested by an increasing number of studies and carry important information about the orogen’s segmentation. Here we compile the hitherto most complete land gravity dataset in the region which enables the currently highest resolution plausible analysis. To study lateral variations in collisional structure we compute arc-parallel gravity anomalies (APaGA) by subtracting the average arc-perpendicular profile from our dataset; we compute likewise for topography (APaTA). We find no direct correlation between APaGA, APaTA and background seismicity, as suggested in oceanic subduction context. In the Himalayas APaTA mainly reflect relief and erosional effects, whereas APaGA reflect the deep structure of the orogen with clear lateral boundaries. Four segments are outlined and have disparate flexural geometry: NE India, Bhutan, Nepal & India until Dehradun, and NW India. The segment boundaries in the India plate are related to inherited structures, and the boundaries of the Shillong block are highlighted by seismic activity. We find that large earthquakes of the past millennium do not propagate across the segment boundaries defined by APaGA, therefore these seem to set limits for potential rupture of megathrust earthquakes

    Bedrock sculpting under an active alpine glacier revealed from cosmic-ray muon radiography.

    Get PDF
    Mountain glaciers form landscapes with U-shaped valleys, roche moutonées and overdeepenings through bedrock erosion. However, little evidence for active glacial carving has been provided particularly for areas above the Equilibrium Line Altitude (ELA) where glaciers originate. This is mainly due to our lack of information about the shape of the bedrock underneath active glaciers in highly elevated areas. In the past years, the bedrock morphology underneath active glaciers has been studied by geophysical methods in order to infer the subglacial mechanisms of bedrock erosion. However, these comprise surveys on the glaciers' surface, from where it has been difficult to investigate the lateral boundary between the ice and the bedrock with sufficient resolution. Here we perform a muon-radiographic inspection of the Eiger glacier (Switzerland, European Alps) with the aid of cosmic-ray muon attenuation. We find a reach (600 × 300 m) within the accumulation area where strong lateral glacial erosion has cut nearly vertically into the underlying bedrock. This suggests that the Eiger glacier has profoundly sculpted its bedrock in its accumulation area. This also reveals that the cosmic-ray muon radiography is an ideal technology to reconstruct the shape of the bedrock underneath an active glacier

    Functional Characterization of the HuR:CD83 mRNA Interaction

    Get PDF
    Maturation of dendritic cells (DC) is characterized by expression of CD83, a surface protein that appears to be necessary for the effective activation of naïve T-cells and T-helper cells by DC. Lately it was shown that CD83 expression is regulated on the posttranscriptional level by interaction of the shuttle protein HuR with a novel posttranscriptional regulatory RNA element (PRE), which is located in the coding region of the CD83 transcript. Interestingly, this interaction commits the CD83 mRNA to efficient nuclear export via the CRM1 pathway. To date, however, the structural basis of this interaction, which potentially involves three distinct RNA recognition motifs (RRM1–3) in HuR and a complex three-pronged RNA stem-loop element in CD83 mRNA, has not been investigated in detail. In the present work we analyzed this interaction in vitro and in vivo using various HuR- and CD83 mRNA mutants. We are able to demonstrate that both, RRM1 and RRM2 are crucial for binding, whereas RRM3 as well as the HuR hinge region contributed only marginally to this protein∶RNA interaction. Furthermore, mutation of uridine rich patches within the PRE did not disturb HuR:CD83 mRNA complex formation while, in contrast, the deletion of specific PRE subfragments from the CD83 mRNA prevented HuR binding in vitro and in vivo. Interestingly, the observed inhibition of HuR binding to CD83 mRNA does not lead to a nuclear trapping of the transcript but rather redirected this transcript from the CRM1- towards the NXF1/TAP-specific nuclear export pathway. Thus, the presence of a functional PRE permits nucleocytoplasmic trafficking of the CD83 transcript via the CRM1 pathway

    Simian virus 40 inhibits differentiation and maturation of rhesus macaque DC-SIGN+-dendritic cells

    Get PDF
    Dendritic cells (DC) are the initiators and modulators of the immune responses. Some species of pathogenic microorganisms have developed immune evasion strategies by controlling antigen presentation function of DC. Simian virus 40 (SV40) is a DNA tumor virus of rhesus monkey origin. It can induce cell transformation and tumorigenesis in many vertebrate species, but often causes no visible effects and persists as a latent infection in rhesus monkeys under natural conditions. To investigate the interaction between SV40 and rhesus monkey DC, rhesus monkey peripheral blood monocyte-derived DC were induced using recombinant human Interleukin-4 (rhIL-4) and infective SV40, the phenotype and function of DC-specific intracellular adhesion molecule-3 grabbing nonintegrin (DC-SIGN)+ DC were analyzed by flow cytometry (FCM) and mixed lymphocyte reaction (MLR). Results showed that SV40 can down-regulate the expression of CD83 and CD86 on DC and impair DC-induced activation of T cell proliferation. These findings suggest that SV40 might also cause immune suppression by influencing differentiation and maturation of DC

    Altered maturation of peripheral blood dendritic cells in patients with breast cancer

    Get PDF
    Tumours have at least two mechanisms that can alter dendritic cell (DC) maturation and function. The first affects the ability of haematopoietic progenitors to differentiate into functional DCs; the second affects their differentiation from CD14+ monocytes, promoting an early but dysfunctional maturation. The aim of this study was to evaluate the in vivo relevance of these pathways in breast cancer patients. For this purpose, 53 patients with invasive breast cancer were compared to 68 healthy controls. To avoid isolation or culture procedures for enrichment of DCs, analyses were directly performed by flow cytometry on whole-blood samples. The expression of surface antigens and intracellular accumulation of regulatory cytokines upon LPS stimulation were evaluated. The number of DCs, and in particular of the myeloid subpopulation, was markedly reduced in cancer patients (P < 0.001). Patient DCs were characterized by a more mature phenotype compared with controls (P = 0.016), and had impaired production of IL-12 (P < 0.001), These alterations were reverted by surgical resection of the tumour. To investigate the possible role of some tumour-related immunoactive soluble factors, we measured the plasmatic levels of vascular endothelial growth factor, IL-10 and spermine. A significant inverse correlation between spermine concentration and the percentage of DCs expressing IL-12 was found. Evidence was also obtained that in vitro exposure of monocyte-derived DCs to spermine promoted their activation and maturation, and impaired their function. Taken together, our results suggest that both the above-described mechanisms could concomitantly act in breast cancer to affect DC differentiation, and that spermine could be a mediator of dysfunctional maturation of DCs

    Role of host genetics in fibrosis

    Get PDF
    Fibrosis can occur in tissues in response to a variety of stimuli. Following tissue injury, cells undergo transformation or activation from a quiescent to an activated state resulting in tissue remodelling. The fibrogenic process creates a tissue environment that allows inflammatory and matrix-producing cells to invade and proliferate. While this process is important for normal wound healing, chronicity can lead to impaired tissue structure and function

    Sex Bias in Pathogenesis of Autoimmune Neuroinflammation: Relevance for Dimethyl Fumarate Immunomodulatory/Anti-oxidant Action

    Get PDF
    In the present study, upon showing sexual dimorphism in dimethyl fumarate (DMF) efficacy to moderate the clinical severity of experimental autoimmune encephalomyelitis (EAE) in Dark Agouti rats, cellular and molecular substrate of this dimorphism was explored. In rats of both sexes, DMF administration from the day of immunization attenuated EAE severity, but this effect was more prominent in males leading to loss of the sexual dimorphism observed in vehicle-administered controls. Consistently, in male rats, DMF was more efficient in diminishing the number of CD4+ T lymphocytes infiltrating spinal cord (SC) and their reactivation, the number of IL-17+ T lymphocytes and particularly cellularity of their highly pathogenic IFN-gamma+GM-CSF+IL-17+ subset. This was linked with changes in SC CD11b+CD45+TCR alpha beta- microglia/proinflammatory monocyte progeny, substantiated in a more prominent increase in the frequency of anti-inflammatory phygocyting CD163+ cells and the cells expressing high surface levels of immunoregulatory CD83 molecule (associated with apoptotic cells phagocytosis and implicated in downregulation of CD4+ T lymphocyte reactivation) among CD11b+CD45+TCR alpha beta- cells in male rat SC. These changes were associated with greater increase in the nuclear factor (erythroid-derived 2)-like 2 expression in male rats administered with DMF. In accordance with the previous findings, DMF diminished reactive nitrogen and oxygen species generation and consistently, SC level of advanced oxidation protein products, to the greater extent in male rats. Overall, our study indicates sex-specificity in the sensitivity of DMF cellular and molecular targets and encourages sex-based clinical research to define significance of sex for action of therapeutic agents moderating autoimmune neuroinflammation-/oxidative stress-related nervous tissue damage
    corecore