224 research outputs found
Rendering real-world objects using view interpolation
Presents a new approach to rendering arbitrary views of real-world 3D objects of complex shapes. We propose to represent an object by a sparse set of corresponding 2D views, and to construct any other view as a combination of these reference views. We show that this combination can be linear, assuming proximity of the views, and we suggest how the visibility of constructed points can be determined. Our approach makes it possible to avoid difficult 3D reconstruction, assuming only rendering is required. Moreover, almost no calibration of views is needed. We present preliminary results on real objects, indicating that the approach is feasibl
Can cells solve mazes? Understanding cells responses to wound healing
Wound healing is a complex process that occurs after the body\u27s tissue has been damaged or impaled by a foreign object. Cells must travel from all over the body to the site of injury. The goal of this project is to understand what affects the migration of fibroblast cells in order to develop more effective wound treatments. Our research has aimed to develop a way to map the decision-making processes of fibroblasts that drive their migration to a wound site. We have addressed this by asking the question: can cells solve mazes? Our team has developed several methodologies by which we have been able to study the responsiveness of fibroblasts to certain cues. Specifically the migration of the cells has been tracked relative to physical barriers created by the walls of the maze and chemical concentration gradients. Preliminary results have demonstrated the feasibility of this apparatus for a mode of studying cell proliferation and migration
Neutron recognition in the LAND detector for large neutron multiplicity
The performance of the LAND neutron detector is studied. Using an
event-mixing technique based on one-neutron data obtained in the S107
experiment at the GSI laboratory, we test the efficiency of various analytic
tools used to determine the multiplicity and kinematic properties of detected
neutrons. A new algorithm developed recently for recognizing neutron showers
from spectator decays in the ALADIN experiment S254 is described in detail. Its
performance is assessed in comparison with other methods. The properties of the
observed neutron events are used to estimate the detection efficiency of LAND
in this experiment.Comment: 16 pages, 8 figure
The interaction studied via femtoscopy in p + Nb reactions at
We report on the first measurement of and correlations via
the femtoscopy method in p+Nb reactions at , studied with the High Acceptance Di-Electron Spectrometer
(HADES). By comparing the experimental correlation function to model
calculations, a source size for pairs of and a slightly
smaller value for of is extracted.
Using the geometrical extent of the particle emitting region, determined
experimentally with correlations as reference together with a source
function from a transport model, it is possible to study different sets of
scattering parameters. The correlation is proven sensitive to
predicted scattering length values from chiral effective field theory. We
demonstrate that the femtoscopy technique can be used as valid alternative to
the analysis of scattering data to study the hyperon-nucleon interaction.Comment: 12 pages, 11 figure
The High-Acceptance Dielectron Spectrometer HADES
HADES is a versatile magnetic spectrometer aimed at studying dielectron
production in pion, proton and heavy-ion induced collisions. Its main features
include a ring imaging gas Cherenkov detector for electron-hadron
discrimination, a tracking system consisting of a set of 6 superconducting
coils producing a toroidal field and drift chambers and a multiplicity and
electron trigger array for additional electron-hadron discrimination and event
characterization. A two-stage trigger system enhances events containing
electrons. The physics program is focused on the investigation of hadron
properties in nuclei and in the hot and dense hadronic matter. The detector
system is characterized by an 85% azimuthal coverage over a polar angle
interval from 18 to 85 degree, a single electron efficiency of 50% and a vector
meson mass resolution of 2.5%. Identification of pions, kaons and protons is
achieved combining time-of-flight and energy loss measurements over a large
momentum range. This paper describes the main features and the performance of
the detector system
Strange hadron production at SIS energies: an update from HADES
We present and discuss recent experimental activities of the HADES collaboration on open and hidden strangeness production close or below the elementary NN threshold. Special emphasis is put on the feed-down from ϕ mesons to antikaons, the presence of the Ξ(-) excess in cold nuclear matter and the comparison of statistical model rates to elementary p+p data. The implications for the interpretation of heavy-ion data are discussed as well
Study of e+,e− production in elementary and nuclear collisions near the production threshold with HADES
HADES is a second generation experiment designed to study dielectron production in proton, pion, and heavy ion induced reactions at the GSI accelerator facility in Darmstadt. The physics programme of HADES is focused on in-medium properties of the light vector mesons. In this contribution we present status of the HADES experiment, demonstrate its capability to identify rare dielectron signal, show first experimental results obtained from C+C reactions at 2 A GeV and shortly discuss physics programme of up-coming experimental runs. © 2004 Elsevier B.V. All rights reserved. 53 1 49 58 Cited By :1
Does size matter for horny beetles? A geometric morphometric analysis of interspecific and intersexual size and shape variation in Colophon haughtoni Barnard, 1929, and C. kawaii Mizukami, 1997 (Coleoptera: Lucanidae)
Colophon is an understudied, rare and endangered stag beetle genus with all species endemic to isolated mountain peaks in South Africa’s Western Cape. Geometric morphometrics was used to analyse intersexual and interspecific variation of size and shape in the mandibles, heads, pronota and elytra of two sympatric species: Colophon haughtoni and Colophon kawaii. All measured structures showed significant sexual dimorphism, which may result from male-male competition for females. Female mandibles were too small and featureless for analysis, but male Colophon beetles possess large, ornate mandibles for fighting. Males had significantly larger heads and pronota that demonstrated shape changes which may relate to resource diversion to the mandibles and their supporting structures. Females are indistinguishable across species, but males were accurately identified using mandibles, heads and pronota. Male C. kawaii were significantly larger than C. haughtoni for all structures. These results support the species status of C. kawaii, which is currently in doubt due to its hybridisation with C. haughtoni. We also demonstrate the value of geometric morphometrics as a tool which may aid Colophon conservation by providing biological and phylogenetic insights and enabling species identification
Impact of the Coulomb field on charged-pion spectra in few-GeV heavy-ion collisions
In nuclear collisions the incident protons generate a Coulomb field which acts on produced charged particles. The impact of these interactions on charged-pion transverse-mass and rapidity spectra, as well as on pion–pion momentum correlations is investigated in Au + Au collisions at = 2.4 GeV. We show that the low-m region (m < 0.2 GeV / c) can be well described with a Coulomb-modified Boltzmann distribution that also takes changes of the Coulomb field during the expansion of the fireball into account. The observed centrality dependence of the fitted mean Coulomb potential energy deviates strongly from a scaling, indicating that, next to the fireball, the non-interacting charged spectators have to be taken into account. For the most central collisions, the Coulomb modifications of the HBT source radii are found to be consistent with the potential extracted from the single-pion transverse-mass distributions. This finding suggests that the region of homogeneity obtained from two-pion correlations coincides with the region in which the pions freeze-out. Using the inferred mean-square radius of the charge distribution at freeze-out, we have deduced a baryon density, in fair agreement with values obtained from statistical hadronization model fits to the particle yields
- …