4,850 research outputs found

    Error Prevention Scheme with Four Particles

    Full text link
    It is shown that a simplified version of the error correction code recently suggested by Shor exhibits manifestation of the quantum Zeno effect. Thus, under certain conditions, protection of an unknown quantum state is achieved. Error prevention procedures based on four-particle and two-particle encoding are proposed and it is argued that they have feasible practical implementations.Comment: 4 pages, RevTeX, references updated and improved protocol adde

    A novel quantum key distribution scheme with orthogonal product states

    Get PDF
    The general conditions for the orthogonal product states of the multi-state systems to be used in quantum key distribution (QKD) are proposed, and a novel QKD scheme with orthogonal product states in the 3x3 Hilbert space is presented. We show that this protocol has many distinct features such as great capacity, high efficiency. The generalization to nxn systems is also discussed and a fancy limitation for the eavesdropper's success probability is reached.Comment: 4 Pages, 3 Figure

    Effects of Contact Network Models on Stochastic Epidemic Simulations

    Full text link
    The importance of modeling the spread of epidemics through a population has led to the development of mathematical models for infectious disease propagation. A number of empirical studies have collected and analyzed data on contacts between individuals using a variety of sensors. Typically one uses such data to fit a probabilistic model of network contacts over which a disease may propagate. In this paper, we investigate the effects of different contact network models with varying levels of complexity on the outcomes of simulated epidemics using a stochastic Susceptible-Infectious-Recovered (SIR) model. We evaluate these network models on six datasets of contacts between people in a variety of settings. Our results demonstrate that the choice of network model can have a significant effect on how closely the outcomes of an epidemic simulation on a simulated network match the outcomes on the actual network constructed from the sensor data. In particular, preserving degrees of nodes appears to be much more important than preserving cluster structure for accurate epidemic simulations.Comment: To appear at International Conference on Social Informatics (SocInfo) 201

    A Comparison of Blocking Methods for Record Linkage

    Full text link
    Record linkage seeks to merge databases and to remove duplicates when unique identifiers are not available. Most approaches use blocking techniques to reduce the computational complexity associated with record linkage. We review traditional blocking techniques, which typically partition the records according to a set of field attributes, and consider two variants of a method known as locality sensitive hashing, sometimes referred to as "private blocking." We compare these approaches in terms of their recall, reduction ratio, and computational complexity. We evaluate these methods using different synthetic datafiles and conclude with a discussion of privacy-related issues.Comment: 22 pages, 2 tables, 7 figure

    Leaf segmentation and tracking using probabilistic parametric active contours

    Get PDF
    Active contours or snakes are widely used for segmentation and tracking. These techniques require the minimization of an energy function, which is generally a linear combination of a data fit term and a regularization term. This energy function can be adjusted to exploit the intrinsic object and image features. This can be done by changing the weighting parameters of the data fit and regularization term. There is, however, no rule to set these parameters optimally for a given application. This results in trial and error parameter estimation. In this paper, we propose a new active contour framework defined using probability theory. With this new technique there is no need for ad hoc parameter setting, since it uses probability distributions, which can be learned from a given training dataset

    Modelling diffusion of innovations in a social network

    Get PDF
    A new simple model of diffusion of innovations in a social network with upgrading costs is introduced. Agents are characterized by a single real variable, their technological level. According to local information agents decide whether to upgrade their level or not balancing their possible benefit with the upgrading cost. A critical point where technological avalanches display a power-law behavior is also found. This critical point is characterized by a macroscopic observable that turns out to optimize technological growth in the stationary state. Analytical results supporting our findings are found for the globally coupled case.Comment: 4 pages, 5 figures. Final version accepted in PR

    Phi-values in protein folding kinetics have energetic and structural components

    Full text link
    Phi-values are experimental measures of how the kinetics of protein folding is changed by single-site mutations. Phi-values measure energetic quantities, but are often interpreted in terms of the structures of the transition state ensemble. Here we describe a simple analytical model of the folding kinetics in terms of the formation of protein substructures. The model shows that Phi-values have both structural and energetic components. In addition, it provides a natural and general interpretation of "nonclassical" Phi-values (i.e., less than zero, or greater than one). The model reproduces the Phi-values for 20 single-residue mutations in the alpha-helix of the protein CI2, including several nonclassical Phi-values, in good agreement with experiments.Comment: 15 pages, 3 figures, 1 tabl

    Quantum key distribution via quantum encryption

    Full text link
    A quantum key distribution protocol based on quantum encryption is presented in this Brief Report. In this protocol, the previously shared Einstein-Podolsky-Rosen pairs act as the quantum key to encode and decode the classical cryptography key. The quantum key is reusable and the eavesdropper cannot elicit any information from the particle Alice sends to Bob. The concept of quantum encryption is also discussed.Comment: 4 Pages, No Figure. Final version to appear in PR

    Quantum key distribution without alternative measurements

    Full text link
    Entanglement swapping between Einstein-Podolsky-Rosen (EPR) pairs can be used to generate the same sequence of random bits in two remote places. A quantum key distribution protocol based on this idea is described. The scheme exhibits the following features. (a) It does not require that Alice and Bob choose between alternative measurements, therefore improving the rate of generated bits by transmitted qubit. (b) It allows Alice and Bob to generate a key of arbitrary length using a single quantum system (three EPR pairs), instead of a long sequence of them. (c) Detecting Eve requires the comparison of fewer bits. (d) Entanglement is an essential ingredient. The scheme assumes reliable measurements of the Bell operator.Comment: REVTeX, 5 pages, 2 figures. Published version with some comment

    Theoretical efficient high capacity Quantum Key Distribution Scheme

    Full text link
    A theoretical quantum key distribution scheme using EPR pairs is presented. This scheme is efficient in that it uses all EPR pairs in distributing the key except those chosen for checking eavesdroppers. The high capacity is achieved because each EPR pair carries 2 bits of key code.Comment: 3 pages and 1 figure, to appear in Physical Review
    corecore