4,850 research outputs found
Error Prevention Scheme with Four Particles
It is shown that a simplified version of the error correction code recently
suggested by Shor exhibits manifestation of the quantum Zeno effect. Thus,
under certain conditions, protection of an unknown quantum state is achieved.
Error prevention procedures based on four-particle and two-particle encoding
are proposed and it is argued that they have feasible practical
implementations.Comment: 4 pages, RevTeX, references updated and improved protocol adde
A novel quantum key distribution scheme with orthogonal product states
The general conditions for the orthogonal product states of the multi-state
systems to be used in quantum key distribution (QKD) are proposed, and a novel
QKD scheme with orthogonal product states in the 3x3 Hilbert space is
presented. We show that this protocol has many distinct features such as great
capacity, high efficiency. The generalization to nxn systems is also discussed
and a fancy limitation for the eavesdropper's success probability is reached.Comment: 4 Pages, 3 Figure
Effects of Contact Network Models on Stochastic Epidemic Simulations
The importance of modeling the spread of epidemics through a population has
led to the development of mathematical models for infectious disease
propagation. A number of empirical studies have collected and analyzed data on
contacts between individuals using a variety of sensors. Typically one uses
such data to fit a probabilistic model of network contacts over which a disease
may propagate. In this paper, we investigate the effects of different contact
network models with varying levels of complexity on the outcomes of simulated
epidemics using a stochastic Susceptible-Infectious-Recovered (SIR) model. We
evaluate these network models on six datasets of contacts between people in a
variety of settings. Our results demonstrate that the choice of network model
can have a significant effect on how closely the outcomes of an epidemic
simulation on a simulated network match the outcomes on the actual network
constructed from the sensor data. In particular, preserving degrees of nodes
appears to be much more important than preserving cluster structure for
accurate epidemic simulations.Comment: To appear at International Conference on Social Informatics (SocInfo)
201
A Comparison of Blocking Methods for Record Linkage
Record linkage seeks to merge databases and to remove duplicates when unique
identifiers are not available. Most approaches use blocking techniques to
reduce the computational complexity associated with record linkage. We review
traditional blocking techniques, which typically partition the records
according to a set of field attributes, and consider two variants of a method
known as locality sensitive hashing, sometimes referred to as "private
blocking." We compare these approaches in terms of their recall, reduction
ratio, and computational complexity. We evaluate these methods using different
synthetic datafiles and conclude with a discussion of privacy-related issues.Comment: 22 pages, 2 tables, 7 figure
Leaf segmentation and tracking using probabilistic parametric active contours
Active contours or snakes are widely used for segmentation and tracking. These techniques require the minimization of an energy function, which is generally a linear combination of a data fit term and a regularization term. This energy function can be adjusted to exploit the intrinsic object and image features. This can be done by changing the weighting parameters of the data fit and regularization term. There is, however, no rule to set these parameters optimally for a given application. This results in trial and error parameter estimation. In this paper, we propose a new active contour framework defined using probability theory. With this new technique there is no need for ad hoc parameter setting, since it uses probability distributions, which can be learned from a given training dataset
Modelling diffusion of innovations in a social network
A new simple model of diffusion of innovations in a social network with
upgrading costs is introduced. Agents are characterized by a single real
variable, their technological level. According to local information agents
decide whether to upgrade their level or not balancing their possible benefit
with the upgrading cost. A critical point where technological avalanches
display a power-law behavior is also found. This critical point is
characterized by a macroscopic observable that turns out to optimize
technological growth in the stationary state. Analytical results supporting our
findings are found for the globally coupled case.Comment: 4 pages, 5 figures. Final version accepted in PR
Phi-values in protein folding kinetics have energetic and structural components
Phi-values are experimental measures of how the kinetics of protein folding
is changed by single-site mutations. Phi-values measure energetic quantities,
but are often interpreted in terms of the structures of the transition state
ensemble. Here we describe a simple analytical model of the folding kinetics in
terms of the formation of protein substructures. The model shows that
Phi-values have both structural and energetic components. In addition, it
provides a natural and general interpretation of "nonclassical" Phi-values
(i.e., less than zero, or greater than one). The model reproduces the
Phi-values for 20 single-residue mutations in the alpha-helix of the protein
CI2, including several nonclassical Phi-values, in good agreement with
experiments.Comment: 15 pages, 3 figures, 1 tabl
Quantum key distribution via quantum encryption
A quantum key distribution protocol based on quantum encryption is presented
in this Brief Report. In this protocol, the previously shared
Einstein-Podolsky-Rosen pairs act as the quantum key to encode and decode the
classical cryptography key. The quantum key is reusable and the eavesdropper
cannot elicit any information from the particle Alice sends to Bob. The concept
of quantum encryption is also discussed.Comment: 4 Pages, No Figure. Final version to appear in PR
Quantum key distribution without alternative measurements
Entanglement swapping between Einstein-Podolsky-Rosen (EPR) pairs can be used
to generate the same sequence of random bits in two remote places. A quantum
key distribution protocol based on this idea is described. The scheme exhibits
the following features. (a) It does not require that Alice and Bob choose
between alternative measurements, therefore improving the rate of generated
bits by transmitted qubit. (b) It allows Alice and Bob to generate a key of
arbitrary length using a single quantum system (three EPR pairs), instead of a
long sequence of them. (c) Detecting Eve requires the comparison of fewer bits.
(d) Entanglement is an essential ingredient. The scheme assumes reliable
measurements of the Bell operator.Comment: REVTeX, 5 pages, 2 figures. Published version with some comment
Theoretical efficient high capacity Quantum Key Distribution Scheme
A theoretical quantum key distribution scheme using EPR pairs is presented.
This scheme is efficient in that it uses all EPR pairs in distributing the key
except those chosen for checking eavesdroppers. The high capacity is achieved
because each EPR pair carries 2 bits of key code.Comment: 3 pages and 1 figure, to appear in Physical Review
- …
