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Abstract. Active contours or snakes are widely used for segmentation and track-
ing. These techniques require the minimization of an energy function, which is
generally a linear combination of a data fit term and a regularization term. This
energy function can be adjusted to exploit the intrinsic object and image fea-
tures. This can be done by changing the weighting parameters of the data fit and
regularization term. There is, however, no rule to set these parameters optimally
for a given application. This results in trial and error parameter estimation. In
this paper, we propose a new active contour framework defined using probability
theory. With this new technique there is no need for ad hoc parameter setting,
since it uses probability distributions, which can be learned from a given training
dataset.

1 Introduction

With a constantly increasing demand for food it becomes necessarily to optimize agri-
cultural planning, e.g. to plant the best type of plants and use the best fertilizers for
a given field with a specific soil, expected weather, etc. This off course assumes it is
known what the best plant type is for a specific field. This has led to the development
of biological laboratories which quantitatively measure the development of plants un-
der the influence of specific stress factors, e.g. wind, lack of nutrients, etc. A common
feature to evaluate the well-being of a plant is to periodically measure the average leaf
temperature using a thermal camera.

The reliable measuring of average leaf temperature in thermal images is a time
consuming task. It demands skilled technicians who spend time identifying and delin-
eating objects of interest in the image. Although interactive software can ease this work,
this approach becomes impractical when the measurements have to be monitored over
time for a large variety of plant types. This paper proposes an automated technique to
segment leaves and measure its average temperature in thermal images. An interesting
approach to segment objects is based on probability theory [1,2]. In this work, a new
Bayesian technique is proposed. This new technique combines the Bayesian framework
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with the popular active contour model, an extensively studied segmentation and track-
ing framework used in computer vision.

In the active contour framework, an initial contour is moved and deformed in order
to minimize a specific energy function. This energy function should be minimal when
the contour is delineating the object of interest, e.g. a leaf. Two main groups can be dis-
tinguished in the active contour framework: one group representing the active contour
explicitly as a parameterized curve and a second group which represents the contour
implicitly using level sets. In the first group, also called snakes, the contour generally
converges towards edges in the image [3,4,5]. The second group generally has an energy
function based on region properties, such as the intensity variance of the enclosed seg-
ment [6,7]. These level set approaches have gained a lot of interest since they have some
benefits over snakes. They can for example easily change their topology, e.g. splitting
a segment into multiple unconnected segments. Recently an active contour model has
been proposed with a convex energy function, making it possible to define fast global
optimizers [8,9].

Unfortunately do the level set approaches assume certain prior knowledge about the
regions defined, e.g. the variance of intensity in the segments should be minimal. These
kind of assumptions are unfortunately not always valid and might bias the tempera-
ture measurements of leaves. Therefore we will base our new active contour model on
the snake approach. This doesn’t form a problem since leaves don’t divide and there-
fore we don’t need the variable topology of level set active contours. Although snakes
don’t have global optimizers, several optimizations techniques have been proposed and
proven useful for segmentation and tracking. In order not to converge to local optima,
one or more regularization terms are incorporated in the energy function. The influence
of these regularization terms can be tuned using a set of weighting parameters. This
tuning is generally done by trial and error, which is a time consuming and error prone
approach. Even after manually tuning, the parameters might not be optimal since the
segmentation quality in function of these weighting parameters generally is not a con-
vex function. So only by exploring the full parameter space one can be sure to find the
optimal parameters. We propose a new active contour framework based on probability
theory. Instead of exhaustively searching optimal weighting parameters, the proposed
method uses prior knowledge about the probability of certain features, e.g. edges. It
also removes the linear influence of image features, i.e. it is not because the gradient of
an edge is twice as large as another edge, that it is twice as likely to be the true border
of an object. This is especially important if you are segmenting leaves in noisy images
with other objects.

This paper is arranged as follows. The next section provides a detailed description
of parametric active contours. Both the classical and gradient vector flow snakes are
explained. In section 3 our proposed algorithm is presented. Section 4 elaborates on the
results and compares the proposed methods with the classical snakes. Finally, section 5
recapitulates and lists some future research possibilities.
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2 Active Contours

2.1 Snakes

The classical snake model proposed by Kass et al. [4], defines the active contour as a
parametric curve, r(s) = (x(s), y(s)) with s ∈ [0, 1], that moves in the spatial domain
until the energy functional in Eq. (1) reaches its minimum value.

E[r] = Eint(r(s)) + Eext(r(s)) (1)

Eint[.] and Eext[.] represent the internal and external energy, respectively correspond-
ing to a regularization and a data fit term. A common internal energy function that
enforces smoothness along the contour is defined as follows:

Eint[r(s)] =
1

2

∫
α
∣∣∣∂r(s)
∂s

∣∣∣2 + β
∣∣∣∂2r(s)
∂ds2

∣∣∣2ds (2)

where α and β are weighting parameters. The first term, also known as tension energy,
prevents the snake to ”stretch” itself too much, thus avoid being attracted to isolated
points. The second term, known as bending energy, prevents the contour of developing
sharp angles. More complex internal energy functions, e.g. incorporating prior shape
knowledge, have also been reported in literature [10,11].

The external energy is derived from the image, so that the snake will be attracted
to features of interest. Given a grey level image I(x, y) , a common external energy is
defined as:

Eext[r] =

∫
−
∣∣∇I(r(s)∣∣2ds (3a)

or

Eext[r] =

∫
−
∣∣∣∇(Gσ(x, y) ∗ I(r(s)))∣∣∣2ds (3b)

where ∇ is the gradient operator, Gσ(x, y) a 2D Gaussian kernel with standard devia-
tion σ and where ∗ is the convolution operator.

2.2 Optimization

Eq. (1) can be minimized using gradient descent by treating r(s) as a function of time,
i.e. r(s, t). The partial derivative of r with respect to t is then

dx(s, t)

dt
= α

d2x(s, t)

ds2
− β d

4x(s, t)

ds4
− ∂Eext

∂x
(4a)

dy(s, t)

dt
= α

d2y(s, t)

ds2
− β d

4y(s, t)

ds4
− ∂Eext

∂y
(4b)

The snake stabilizes, i.e. an optimum is found, when the terms dx(s,t)
dt and dy(s,t)

dt van-
ish.



4 Jonas De Vylder et al.

This gradient descent approach requires a good initialization, close to the object
boundary, in order to segment the object. This limitation is caused by the nature of
the partial derivatives of the external energy, which differs from the null vector only
in the proximity of the object’s boundary. As we move away from the boundary these
derivatives approach the null vector, or under the influence of noise point towards false
optima. This results in a contour which will converge to a local optimum. To overcome
this problem, Xu and Prince [12] proposed to replace the partial derivatives by an ex-
ternal force v(r(s)) = (u(r(s)), v(r(s))). This force is calculated by minimizing the
following energy functional:

EGV F [u, v] =∫∫
µ
(du
dx

2

+
du

dy

2

+
dv

dx

2

+
dv

dy

2)
+ | ∇f |2| v −∇f |2 dxdy (5)

where µ is a nonnegative parameter expressing the degree of smoothness of the force
field v and where f is an edge map, e.g. f(x, y) =| ∇I(x, y) |. The first term of Eq.
(5) keeps the field v smooth, whereas the second term forces the field v to resemble
the original edge map in the neighbourhood of edges. This new external force is called
gradient vector flow (GVF). For details on the optimization of Eq. (5) , we refer to [12].

3 Probabilistic active contours

The active contour framework has already been proven useful for a wide range of ap-
plications. However, tuning the weighting parameters of the energy function remains
a challenging task. The optimal parameters are a trade-off, where the regularization
weights have to be set high enough to overcome the influence of clutter and low enough
to accurately detect the true contour of the object. In this section, a new set of active
contours is defined. This framework is based on statistical modelling of object features,
thus omitting the tuning of the weighting parameters.

3.1 Framework

The goal of our active contour framework is to find the contour, r∗(.), which is most
probable to delineate the object of interest. This can be formalized as finding the contour
that maximizes P [O[r(.)]], where O[r(.)] is a predicate returning true if the contour
delineates the object of interest and returns false if it does not. Let’s assume that in
order to find such a probable contour we can use a set of features F (x, y) measured in
the image, e.g. the edge strength at a specific pixel. The optimal contour can be defined
as

r∗(.) = argmax
r(.)

P
[
O[r(.)]

∣∣F (., .)] (6)
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Using Bayes rule, we can rewrite this as

r∗(.) = argmax
r(.)

P
[
F (., .)

∣∣O[r(.)]
]
P
[
O[r(.)]

]
P
[
F (., .)

] (7)

= argmax
r(.)

(
log

P
(
F (., .)

∣∣O[r(.)]
)

P
(
F (., .)

) + logP
(
O[r(.)]

))
(8)

Equivalent to the snake energy, we can define an internal and external probability, re-

spectively: Pint[r(.)] = logP
(
O[r(.)]

)
and Pext[r(.)] = log

P
(
F (.,.)

∣∣O[r(.)]
)

P
(
F (.,.)

) .

3.2 Internal probability

The internal probability is completely independent of the image and can be used to
incorporate the shape possibility of an object of interest. As an example we will use a
simple model proposed in [13], where the likeliness of a contour only depends on the
second derivative of the contour.

Pint[r(.)] = logP
[
O[r(.)]

]
= logP

(∣∣∣∂2r(s)
∂s2

∣∣∣]
=

∫ 1

0

logP
(∣∣∣∂r2(t)

∂t2

∣∣∣)dt (9)

For this last step we assume that the second derivative of r(t) is independent for every
t. This off course assumes that the probability distribution of P

(∣∣∣∂r(t)∂t2

∣∣∣) is known.
This probability distribution can be learned out of a small training set of ground truth
segments. Note that this is just an example of an internal probability model. If the
objects of interest has a specific shape or if they have more pronounced local features,
e.g. jags, then the internal probability could be formulated using a more complex shape
model, such as the models proposed in [11,10].

3.3 External probability

The external probability depends on the image features that are used to characterize an
object. As example we will model the objects of interest as an edge map, e.g. F (x, y) =|
∇I(x, y) | . If we consider the gradient to be independent for all (x, y), then the external
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probability can be rewritten as:

Pext[r(.)] = log
P
[
F (., .)

∣∣O[r(.)]
]

P
[
F (., .)

]
= log

P
[
| ∇I(., .) |

∣∣O[r(.)]
]

P
[
| ∇I(., .) |

]
=

∫∫
Ω+

log
P
(
| ∇I(u,w) |

∣∣O[r(.)]
)

P
(
| ∇I(u,w) |

) du dw (10)

+

∫∫
Ω−

log
P
(
| ∇I(u,w) |

∣∣O[r(.)]
)

P
(
| ∇I(u,w) |

) du dw (11)

where Ω+ = {(u,w)
∣∣(∃k ∈ [0, 1]

)(
r(k) = (u,w)

)
} and Ω− = {(u,w)

∣∣(@k ∈
[0, 1]

)(
r(k) = (u,w)

)
}. For the application of plant monitoring, imaging happens in a

strictly controlled environment. Due to this controlled imaging, technicians can avoid
clutter and thus minimize edges not coming from leaf contours.

Therefore
∫∫
Ω−

log
P
(
|∇I(u,w)|

∣∣O[r(.)]
)

P (|∇I(u,w)|) du dw will be very small. This allows us to ap-

proximate Eq. (11) by discarding this factor, i.e.

Pext[r(.)] =

∫ 1

0

log
P (| ∇I(r(t)) |

∣∣O[r(.)]
)

P (| ∇I(r(t)) |)
dt (12)

The probabilities used in Eq. (12) can be interpreted as follows:

– P (| ∇I(r(t)) |
∣∣O[r(.)]

)
: the probability that the gradient of a point lying on the

contour of a real segment is equal to | ∇I(r(s)) | .
– P (| ∇I(r(s)) |

∣∣r(s)): the probability that the gradient of a random point in the
image is equal to | ∇I(r(s)) | whether or not this point is on the contour of a real
object or not.

The probability distribution of the gradient strength of an object’s contour can be esti-
mated from a small training set of images where the objects are manually segmented.
First measure the gradient strength at the contours delineating the ground truth seg-
ments. Then based on these measurements, calculate the probability distribution, e.g.
using a kernel density estimator. The probability distribution of the gradient can be
estimated in a similar way, but instead of measuring only the gradient strength at the
contours, measure it at each pixel in the training data set. Note that although this exam-
ple uses the gradient, this framework could also incorporate other image features such
as ridges, intensity, output of a feature detector, region-based features, etc. [1,14,6].
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3.4 Optimization

Substituting the proposed internal in external probabilities in Eq. (8) results in:

r∗(.) = argmax
r(.)

(
Pint

[
r(.)
]
+ Pext

[
r(.)
)]

= argmax
r(.)

∫ 1

0

log
P (| ∇I(r(s)) |

∣∣O[r(.)]
)

P (| ∇I(r(s)) |)
+ logP

(∣∣∣∂r2(s)
∂s2

∣∣∣)ds
(13)

This optimization can be solved using gradient descent by treating r(s) as a function of
time, i.e. r(s, t). The partial derivative of r with respect to t is then

dx(s, t)

dt
=
d logP

(∣∣∣∂r2(s,t)∂s2

∣∣∣)
ds

+
∂ log

P
(
|∇I(r(s,t))|

∣∣O[r(.,t)]=true
)

P (|∇I(r(s,t))|)

∂x
(14a)

dy(s, t)

dt
=
d logP

(∣∣∣∂r2(s,t)∂s2

∣∣∣)
ds

+
∂ log

P
(
|∇I(r(s,t))|

∣∣O[r(.,t)]=true
)

P (|∇I(r(s,t))|)

∂y
(14b)

In order to use gradient descent, the initial r(s) should be in the vicinity of the true
object. To avoid the probabilistic snake of converging to a local, false optimum, the
same optimization technique as used with classical snakes can be used, i.e. optimization
using gradient vector flow. This can easily be done by imposing the edge map in Eq.

5 to be F (x, y) = log
P
(
|∇I(x,y)|

∣∣O(x,y)=true
)

P (|∇I(x,y)|) , where O(x, y) = true represents the
assumption that (x, y) lies on the contour of a leaf.

4 Results

The proposed method was developed to automate the measurement of average temper-
ature of leaves. Therefore individual leaves should be segmented and tracked over time.
The dataset used to validate the proposed method monitors sugar beet seedling plants
using a thermal camera. The time-lapse sequences were captured at a time resolution of
one image an hour. These thermal images are noisy, low contrast greyscale images. In
these time-lapse sequences the 4 leaves of the sugar beet seedlings all move in different
directions, at different speeds.

Fig.1 shows an example of leaf segmentation using both the classical active contours
as our proposed probabilistic active contours. All active contours are optimized using
the gradient vector flow optimization. The gradient vector flow force was calculated
using 30 iterations and a smoothing factor µ equal to 0.1. In Fig.1 (a) the initialization
of the four different snakes is shown. As can be seen, is this initialization already a
good approximation of the real leaf contours. This proper initialization is however not
sufficient for the classical active contours to converge to the real leaf boundaries. Two
examples of active contour segmentation using different weighting parameters α and β
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in Eq. (2) can be seen in Fig.1 (b) and (c). The active contours in Figure (b) were opti-
mized using 1

6 and 1
3 respectively for weighting parameters α and β. These weighting

values are apparently too low to prevent the contours to converge to false local optima.
An example of such an incorrect convergence can be seen at the yellow contour, which
partially converged towards the border of a wrong leaf. The cause of these segmentation
errors is the difference in the gradient strength. Figure (d) shows the absolute value of
the gradient in the image. The bigger leaves display a much stronger gradient which
attract the contours of the elongated smaller leaves. Note this effect near the stalk of
the ”yellow” leaf. In Figure (c), the yellow contour converged correctly by increasing
the contour weighting parameters, i.e. values 5

3 and 2
3 respectively for parameters α and

β. However due to these strong smoothness constraints, the green and blue contours
lose the real leaf borders near the tip of the leaves. Clearly, a general set of weighting
parameter values is difficult to find. Even when such ”optimal” parameter combination
could be found for one image, it is unlikely that it would work for all the images in the
sequence.

We now show results for our proposed method to illustrate that it does not suf-
fer from the parameter selection, nor does it suffer from the linear influence that edge
strength has. In order to use the proposed method, the internal and external probabili-
ties have to be modelled first. The prior probabilities used for our method were learned
using a single ground truth image. This image originated from a training time lapse se-
quence that was manually segmented. The distributions were calculated using the kernel
density estimator with a normal distribution as kernel. In Fig.1 (e) the external probabil-
ity at each pixel is shown. The gradient strength at leaf borders varies between leaves,
nevertheless show the different leaves an equally strong probability at their border. This
results in a better segmentation result as can be seen in Figure (f).

The previous example started from an almost perfect initialization. This was helpful
to illustrate the problems that might occur with classical active contours, but it is rare
that such a good initial contour is available. A more realistic example is shown in Fig.
2. The initialization is shown in Figure (a). In Figure (b) a detailed view of the GVF
force field is shown. The force field points towards both leaves, as can be expected.
The regularization effect of the internal probability however enforces the contour to
converge to the correct leaf as is shown in Figure (c).

To quantitatively validate the proposed method, in 56 images have been manually
segmented, each containing 4 leaves. The initialization of the active contours was based
on these ground truth segments: the segments were dilated using a circular structuring
element of size 5, the borders of these dilated segments were then used as initialization.
As a validation metric the Dice coefficient is used: consider S the resulting segment
from the active contour, i.e. the region enclosed by r(s), and GT the ground truth seg-
ment, then the Dice coefficient between S and GT is defined as:

d(S,GT ) =
2 Area(S ∧GT )

Area(S) + Area(GT )
(15)

Here S∧GT consist of all pixels which both belong to the detected segment as well as to
the ground truth segment. If S and GT are equal, the Dice coefficient is equal to one. The
Dice coefficient will approach zero if the regions hardly overlap. In order to compare
our method with the active contours with the most optimal parameter setting, the image
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(a) (b) (c)

(d) (e) (f)

Fig. 1. Examples of segmentation using (probabilistic) active contours. The top row contains in
(a) the initialization used for the (probabilistic) active contours, (b) the segmentation result of
the classical active contours with α = 1

6
, β = 1

3
, (c) the segmentation result of the classical

active contours with α = 1, β = 2
3

. The bottom row: (d) the gradient strength of the image, (e)
the external probability of each pixel in the image, (f) the segmentation result of the proposed
probabilistic active contours

sequence has been segmented with α and β both in the range of 0, 1
30 ,

2
30 ,

3
30 , ..., 1. The

best combination of α and β resulted in an average Dice coefficient of 0.872. Using
these optimal parameters, 24 segments resulted in a Dice coefficient equal to 0, i.e. the
segments where completely lost. The proposed probabilistic active contours resulted in
an average Dice coefficient of 0.929 with no leaves lost.

As a last example our proposed method was applied for leaf tracking in a time lapse
sequence. Since the movement of the leaves does not seem to have a clear motion model,
we cannot incorporate prior knowledge about the motion in our tracking methods such
as in [15,1]. Instead the result of frame t will be used as an initialization for frame t+1,
such as done by Tsechpenakis et al. [16]. As can be seen in n Fig. 3 does the proposed
method cope with the movement and deformation of the leaves. Even frame 15 where
the illumination level diminished due to nightfall, is still segmented correctly. If this
illumination change is too strong, the learned probability distributions will not corre-
spond to the image features. Therefore the segmentation results will be less accurate.
This can already be seen at Figure (c), where the contours delineating the bigger leaves
miss the true border at the center of the plant. Although this error is almost unnoticeable
at this frame, there’s a risk that it becomes more prominent in subsequent frames which
will use these contours as an initialization.
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(a) (b) (c)

Fig. 2. Examples of segmentation using probabilistic active contours. (a) the initialization used
for the (probabilistic) active contours, (b) the gradient vector flow of the external probability,
i.e. the force used to optimize the external probability of the active contour (c) the segmentation
result of the proposed probabilistic active contours

(a) frame 1 (b) Frame 7 (c) Frame 15

Fig. 3. Example of tracking using probabilistic active contours
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5 Discussion and Conclusion

In this paper a new variant on the active contour framework is defined. Instead of opti-
mizing an energy function it strives to maximize the probability that the contour is on
the edge of an object. The proposed method does not need to tune a set of weighting
parameters, since it is based on probability theory. This approach however needs a good
estimate of the probability distribution functions that are needed for the calculation of
the internal and external probability. These probability distributions can be learned from
a ground truth training set. This method has been tested for the segmentation and track-
ing of sugar beet seedling leaves in thermal time lapse sequences. In these tests the
proposed technique has been shown to be useful and outperformed classical active con-
tours for the segmentation of multiple objects. To cope with changing light conditions,
the learned probability distributions should be updated in order to follow the illumi-
nation settings of the image. This could be done using methods similar to background
maintenance techniques [17]. We intend to investigate the influence of these methods
in future research.
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