1,132 research outputs found
Test of the Conserved Vector Current Hypothesis by beta-ray Angular Distribution Measurement in the Mass-8 System
The beta-ray angular correlations for the spin alignments of 8Li and 8B have
been observed in order to test the conserved vector current (CVC) hypothesis.
The alignment correlation terms were combined with the known beta-alpha-angular
correlation terms to determine all the matrix elements contributing to the
correlation terms. The weak magnetism term, 7.5\pm0.2, deduced from the
beta-ray correlation terms was consistent with the CVC prediction 7.3\pm0.2,
deduced from the analog-gamma-decay measurement based on the CVC hypothesis.
However, there was no consistent CVC prediction for the second-forbidden term
associated with the weak vector current. The experimental value for the
second-forbidden term was 1.0 \pm 0.3, while the CVC prediction was 0.1 \pm 0.4
or 2.1 \pm 0.5.Comment: 31 pages, 12 figures, Accepted for publication in Phys. Rev.
LUX -- A Laser-Plasma Driven Undulator Beamline
The LUX beamline is a novel type of laser-plasma accelerator. Building on the
joint expertise of the University of Hamburg and DESY the beamline was
carefully designed to combine state-of-the-art expertise in laser-plasma
acceleration with the latest advances in accelerator technology and beam
diagnostics. LUX introduces a paradigm change moving from single-shot
demonstration experiments towards available, stable and controllable
accelerator operation. Here, we discuss the general design concepts of LUX and
present first critical milestones that have recently been achieved, including
the generation of electron beams at the repetition rate of up to 5 Hz with
energies above 600 MeV and the generation of spontaneous undulator radiation at
a wavelength well below 9 nm.Comment: submitte
Competition for inorganic and organic forms of nitrogen and phosphorous between phytoplankton and bacteria during an <i>Emiliania huxleyi</i> spring bloom
Using <sup>15</sup>N and <sup>33</sup>P, we measured the turnover of organic and inorganic nitrogen (N) and phosphorus (P) substrates, and the partitioning of N and P from these sources into two size fractions of marine osmotrophs during the course of a phytoplankton bloom in a nutrient manipulated mesocosm. The larger size fraction (>0.8 μm), mainly consisting of the coccolithophorid <i>Emiliania huxleyi</i>, but also including an increasing amount of large particle-associated bacteria as the bloom proceeded, dominated uptake of the inorganic forms NH<sub>4</sub><sup>+</sup>, NO<sub>3</sub><sup>−</sup>, and PO<sub>4</sub><sup>3−</sup>. The uptake of N from leucine, and P from ATP and dissolved DNA, was initially dominated by the 0.8–0.2 μm size fraction, but shifted towards dominance by the >0.8 μm size fraction as the system turned to an increasing degree of N-deficiency. Normalizing uptake to biomass of phytoplankton and heterotrophic bacteria revealed that organisms in the 0.8–0.2 μm size fraction had higher specific affinity for leucine-N than those in the >0.8 μm size fraction when N was deficient, whereas the opposite was the case for NH<sub>4</sub><sup>+</sup>. There was no such difference regarding the specific affinity for P substrates. Since heterotrophic bacteria seem to acquire N from organic compounds like leucine more efficiently than phytoplankton, our results suggest different structuring of the microbial food chain in N-limited relative to P-limited environments
Golden gravitational lensing systems from the Sloan Lens ACS Survey. I. SDSS J1538+5817: one lens for two sources
We present a lensing and photometric study of the exceptional system SDSS
J1538+5817, identified by the SLACS survey. The lens is a luminous elliptical
at redshift z=0.143. Using HST public images in two different filters, the
presence of two background sources lensed into an Einstein ring and a double
system is ascertained. Our new spectroscopic observations, performed at the
NOT, reveal that the two sources are located at the same redshift z=0.531. We
investigate the total mass distribution of the lens between 1 and 4 kpc from
the galaxy center by means of parametric and non-parametric lensing codes that
describe the multiple images as point-like objects. Several disparate lensing
models agree on: (1) reproducing accurately the observed image positions; (2)
predicting a nearly axisymmetric total mass distribution, centered and oriented
as the light distribution; (3) measuring a value of 8.11 x 10^{10} M_{Sun} for
the total mass projected within the Einstein radius of 2.5 kpc; (4) estimating
a total mass density profile slightly steeper than an isothermal one. A fit of
the SDSS multicolor photometry with CSP models provides a value of 20 x 10^{10}
M_{Sun} for the total stellar mass of the galaxy and of 0.9 for the fraction of
projected luminous over total mass enclosed inside the Einstein radius. By
combining lensing and photometric mass measurements, we differentiate the lens
mass content in terms of luminous and dark matter components. This
two-component modeling, which is viable only in extraordinary systems like SDSS
J1538+5817, leads to a description of the global properties of the galaxy dark
matter halo. Extending these results to a larger number of lenses would improve
considerably our understanding of galaxy formation and evolution processes in
the LCDM scenario.Comment: 21 pages, 16 figures, accepted by The Astrophysical Journa
Paper Session II-C - Decreasing the cost of Spacecraft Processing
This paper focuses on spacecraft and payload design for efficient and low-cost launch site processing. An important assumption here is the use of a modern processing facility, one that is optimized for satellites designed for low-cost operations at the launch site. A typical spacecraft processing flow includes operations in three different areas: non-hazardous, hazardous, and on-pad checkout activities. Smart design practices in each of these areas can reduce the time span for payload processing and thus lower costs throughout the operation. A state-ofthe- art processing facility requires a large expenditure of funds up front, but will recoup those dollars over the useful life of the facility and the satellites processing through it. It is the purpose of this paper to propose a series of design requirements for any satellite application, be it a series intended as part of a constellation (e.g. GPS) or a one-time mission (e.g. Cassini). New spacecraft designers must be able to think past the boundaries of the satellite bus and its payload and determine how the system will be readied for launch at the launch base. This requires a systems approach to design, one based on a rigorous requirements definition process and regular interaction with the engineers who will perform the processing operations prior to launch. Most engineers are not schooled in designing for ease of processing - they are taught how to create a satellite to perform a certain mission. This paper aims to highlight efficient and simple launch site processing activities. While not serving as an all-inclusive checklist for smart processing, this paper tries to get the new spacecraft engineer to start thinking about streamlining launch base activities
A One Step collision Detection Method for Computer Graphics Programs
The topic of this thesis is a collection detection algorithm for use in computer programs dealing in three dimensional graphics. Collision detection is usually accomplished by breaking the movement into small steps and checking if a collision has occurred at each of these discrete steps. This method is a very time-intensive way to detect for collisions and therefore, inefficient for a system which typically moves in large increments. For this kind of system, a method could be developed which checks once for collisions without dividing the move into multiple small increments. The subject of this paper is an algorithm, developed for use in a computer program, that will allow the user to make large movements of the objects and check for collisions quickly and efficiently
Design considerations for table-top, laser-based VUV and X-ray free electron lasers
A recent breakthrough in laser-plasma accelerators, based upon ultrashort
high-intensity lasers, demonstrated the generation of quasi-monoenergetic
GeV-electrons. With future Petawatt lasers ultra-high beam currents of ~100 kA
in ~10 fs can be expected, allowing for drastic reduction in the undulator
length of free-electron-lasers (FELs). We present a discussion of the key
aspects of a table-top FEL design, including energy loss and chirps induced by
space-charge and wakefields. These effects become important for an optimized
table-top FEL operation. A first proof-of-principle VUV case is considered as
well as a table-top X-ray-FEL which may open a brilliant light source also for
new ways in clinical diagnostics.Comment: 6 pages, 4 figures; accepted for publication in Appl. Phys.
Improved limits on nuebar emission from mu+ decay
We investigated mu+ decays at rest produced at the ISIS beam stop target.
Lepton flavor (LF) conservation has been tested by searching for \nueb via the
detection reaction p(\nueb,e+)n. No \nueb signal from LF violating mu+ decays
was identified. We extract upper limits of the branching ratio for the LF
violating decay mu+ -> e+ \nueb \nu compared to the Standard Model (SM) mu+ ->
e+ nue numub decay: BR < 0.9(1.7)x10^{-3} (90%CL) depending on the spectral
distribution of \nueb characterized by the Michel parameter rho=0.75 (0.0).
These results improve earlier limits by one order of magnitude and restrict
extensions of the SM in which \nueb emission from mu+ decay is allowed with
considerable strength. The decay \mupdeb as source for the \nueb signal
observed in the LSND experiment can be excluded.Comment: 10 pages, including 1 figure, 1 tabl
CLASH: z ~ 6 young galaxy candidate quintuply lensed by the frontier field cluster RXC J2248.7-4431
We present a quintuply lensed z ~ 6 candidate discovered in the field of the
galaxy cluster RXC J2248.7-4431 (z ~ 0.348) targeted within the Cluster Lensing
and Supernova survey with Hubble (CLASH) and selected in the deep HST Frontier
Fields survey. Thanks to the CLASH 16-band HST imaging, we identify the
quintuply lensed z ~ 6 candidate as an optical dropout in the inner region of
the cluster, the brightest image having magAB=24.81+-0.02 in the f105w filter.
We perform a detailed photometric analysis to verify its high-z and lensed
nature. We get as photometric redshift z_phot ~ 5.9, and given the extended
nature and NIR colours of the lensed images, we rule out low-z early type and
galactic star contaminants. We perform a strong lensing analysis of the
cluster, using 13 families of multiple lensed images identified in the HST
images. Our final best model predicts the high-z quintuply lensed system with a
position accuracy of 0.8''. The magnifications of the five images are between
2.2 and 8.3, which leads to a delensed UV luminosity of L_1600 ~ 0.5L*_1600 at
z=6. We also estimate the UV slope from the observed NIR colours, finding a
steep beta=-2.89+-0.38. We use singular and composite stellar population SEDs
to fit the photometry of the hiz candidate, and we conclude that it is a young
(age <300 Myr) galaxy with mass of M ~ 10^8Msol, subsolar metallicity
(Z<0.2Zsol) and low dust content (AV ~ 0.2-0.4).Comment: 21 pages, 13 figures, 6 tables, submitted to MNRAS on 11 Aug 2013,
accepted on 23 Nov 201
Proton Driven Plasma Wakefield Acceleration
Plasma wakefield acceleration, either laser driven or electron-bunch driven,
has been demonstrated to hold great potential. However, it is not obvious how
to scale these approaches to bring particles up to the TeV regime. In this
paper, we discuss the possibility of proton-bunch driven plasma wakefield
acceleration, and show that high energy electron beams could potentially be
produced in a single accelerating stage.Comment: 13 pages, 4 figure
- …
